OBJECT-ORIENTED
DESIGN

Duﬁng the design phase, we must elevate the model into actual objects that
can perform the required task. There is a shift in emphasis from the appli-
cation domain to implementation. The classes identified during analysis
provide us a framework for the design phase. In this part, we discuss busi-
ness, view, and access layers classes. The part consists of Chapters 9, 10,
11, and 12.

197



CHAPTER 9o

The Object-Oriented Design
Process and Design Axioms

Chapter Objectives

You should be able to define and understand

* The objeci-oriented design process,

* Object-oriented design axioms and corollaries.
* Design pattemns,

9.1 INTRODUCTION

It was explained in previous chapters that the main focus of the analysis phase of
software development is on “what needs to be done.” The objects discovered dur-
ing analysis can serve as the framework for design [9]. The class's attributes, meth-
ods, and associations identified during analysis must be designed for implementa-
tion as a data fype ¢ expressed in the implementation language. New classes must
be introduced to store intermediate results during program execution. Emphasis
shifts from the application domain to implementation and computer concepts such
as user interfaces or view layer and access layer (see Figures 1-11 and 4—11).

During the analysis, we look at the physical entities or business objects in the

system; that is, who the players are and how they cooperate to do the work of the
application. These objects represent tangible elements of the business. As we saw
in Chapter 7. these objects could be individuals, organizations, machines, or what-
ever else makes sense in the context of the real-world system. During the design
phase, we elevate the model into logical entities, some of which might relate more
to the computer domain (such as user interfaces or the access layer) than the real-
world or the physical domain (such as people or employees). This is where we be-
gin thinking about how to actually implement the problem in a program, The goal

here is to design the classes that we need to implement the system. Fortunately,




200 raRT FOUR: OBJECT-ORIENTED DESIGH

the design model does not look terribly different from the analysis model. The dif-
ference is that, at this level, we focus on the view and access classes, such as how
to maintain information or the best way to interact with a user or present infor-
mation. It also is useful, at this stage, to have a good understanding of the classes
in a development environment that we are using to enforce reusability.

In software development, it is tempting not to be concerned with design. After
all, you (the designer) are so involved with the system that it might be difficult 1o
stop and think about the consequences of each design choice. However, the time
spent on design has a great impact on the overall success of the sofiware devel-
opment project. A large payoff is associated with creating a good design "up
front.” before writing a single line of code. While this is true of all programming,
classes and objects underscore the approach even more. Good design usually sim-
plifies the implementation and maintenance of a project.

In this chapter. we look at the object-oriented design process and axioms. The
basic goal of the axiomatic approach is to formalize the design process and assist
in establishing a scientific foundation for the object-oriented design process, to
provide a fundamental basis for the creation of systems. Without scientific princi-
ples, the design field never will be systematized and so will remain a subject dif-
ficult to comprehend, codify, teach, and practice [10].

9.2 THE OBJECT-ORIENTED DESIGN PROCESS

During the design phase the classes identified in object-oriented analysis must be
revisited with-a shift in focus to their implementation. New classes or attributes
and methods must be added for implementation purposes and user interfaces.

The object-oniented design process consists of the following activities (see Fig-
ure 9-1):

1. Apply design axioms to design classes, their attributes, methods, associations,

structures, and protocols (Chapter 10).

1.1. Refine and complete the static UML class diagram by adding details to the
UML class diagram. This step consists of the following activities:

1.1.1. Refine anributes.

1.1.2. Design methods and protocols by utihzing & UML activity diagram
1o represent the methed’s algonthm.

1.1.3. Refine associations between classes (if required),

1.1.4. Refine class hierarchy and design with inheritance (if required).

L.2. lterate and refine again.

2. Design the access layer (Chapter 11).

2.1. Create mirror classes. For every business class identified and created, cre-
ate one access class, For example, if there are three business classes
{Class!, Class2, and Class3), create three access layer classes (Class1DB,
Class2DB. and Class3DB).

2.2, Identifv access laver class relationships.



CHAPTER g THE DBJECT-ORIENTED DESIGN PROCESS AND DESIGN Axioms 201

00 Design
| [ [ | [
EXI10ITR
m"?;lml::tﬂd Refine UML s st baned o
Sisicint e [ i ——  pototype (] s eased

Continue festing

FIGURE 9-1
The abject-ariented design process in the unified approach.

2.3. Simplify classes and their relationships. The main goal here is to eliminate
redundant classes and structures.

2.3.1. Redundant classes: Do not keep two classes that perform similar
translate request and translate reswits activities. Simply select one
and eliminate the other,

2.3.2. Method classes: Revigit the classes that consist of only one or two
methods to see if they can be eliminated or combined with existing
classes. '

2.4. Iterate and refine again.

3. Design the view layer classes (Chapter 12).
3.1. Design the macro level user interface, identifying view layer objects,
3.2. Design the micro level user interface, which includes these activities:

3.2.1. Design the view layer objects by applying the design axioms and
corollaries.

3.22. Build a prototype of the view layer interface.

3.3. Test usability and user satisfaction (Chapters 13 and 14).
3.4. lterate and refine.

4. Iterate and refine the whole design. Reapply the design axioms and, if needed,
repeat the preceding steps.

Utilizing an incremental approach such as the UA, all stages of software de-
velopment (analysis, modeling, designing, and implementation or programming )
can be performed incrementally, Therefore, all the right decisions need not be
made up front.

From the UML class diagram, you can begin (o extrapolate which classes you
will have to build and which existing classes you can reuse. A% you do this, also
begin thinking about the inheritance structure. If you have several classes that
seem related but have specific differences, you probably will want to make them



202 FART FOUR: OBIECT-ORIENTED DESIGH

common subclasses of an existing class or one that you define. Often, superclasses
are generated while coding, as you realize that common characteristics can be fac-
tored out or in. Good object-oriented design is very iterative. As long as you think
in terms of class of objects, leam what already is there, and are willing to experni-
ment, you soon will feel comfortable with the process.

Design also must be traceable across requirements, analysis, design, code, and
testing. There must be a clear step-by-step approach to the design from the re-
quirements model. All the designed components must directly trace back to the
user requirements. Usage scenarios can serve as test cases to be used during sys-
tem testing (see Figure 1-1).

9.3 OBJECT-ORIENTED DESIGN AXIOMS

By definition, an axiom is a fundamental truth that always is observed to be valid
and for which there is no counterexample or exception. Suh explains that axioms
may be hypothesized from a large number of observations by noting the common
phenomena shared by all cases; they cannot be proven or derived, but they can be
invalidated by counterexamples or exceptions. A theorem is a proposition that may
not be self-evident but ¢can be proven from accepted axioms. It, therefore, is equiv-
alent to a law or pnnciple. Consequently, a theorem is valid if its referent axioms
and deductive steps are valid. A eorollary is a proposition that follows from an ax-
iom or another proposition that has been proven. Again, a corollary is shown to be
valid or not valid in the same manner as a theorem [10].

The author has applied Suh’s design axioms to object-oriented design. Axiom
1 deals with relationships between system components (such as classes, require-
ments, and software components), and Axiom 2 deals with the cumpiexlty of de-
sign.

« Axiom |. The independence axiom. Maintain the independence of compaonents.
« Axiom 2. The information axiom. Minimize the information content of the de-

sign. [ 4 |

Axiom | states that, during the design process, as we go from requirement and
use case to a system component, each component must satisfy that requirement
without affecting other requirements. To make this pmnl clear, lcl s take a look at
there are two requirements: The dnur should Prﬂ‘-’ldﬂ access to food, and the r_nerg}'
lost should be minimal when the door is opened and closed. In other words, open-
ing the door should be independent of losing energy. Is the vertically hung door a
good design? We see that vertically hung door violates Axiom |, because the two
specific requirements (i.e., access to the food and minimal energy loss) are coupled
and are not independent in the proposed design. When, for example, the door is
apened to take out milk, cold air in the refrigerator escapes and warm air from the
outside enters. What is an uncoupled design that somehow does not combine these
two requirements? Once such uncoupled design of the refrigerator door is & hori-
zontally hinged door, such as used in chesi-type freezers. When the door is opened
to take out milk, the cold air (since it is heavier than warm air) will sit at the bot-



CHAPTER 9: THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGN AXioMs 203

tom and not escape. Therefore, opening the door provides aceess to the food and is
independent of energy loss. This type of design satisfies the first axiom.

Axiom 2 is concerned with simplicity. Scientific theoreticians often rely on a
general rule known as Occam's razor, after William of Occam, a 14th century
scholastic philosopher. Briefly put, Occam’s razor says that, “The best theory
explains the known facts with a minimum amount of complexity and ‘maximum
simplicity and straightforwardness.” gy

Occam’s razor has a very usefiil implication in approaching the design of an
object-oriented application. Let us restate Occam's razor rule of simplicity in
object-oriented termis:

The best designs usually involve the least complex code but not necessarily the fewest
number of classes or methods. Minimizing complexity should be the goal, because that
produces the most easily maintained and enhanced application. In an object-oriented
system, the best way to minimize complexity is io use inheritance and the system’s built-
in classes and to add as little as possible to what already is there.

8.4 COROLLARIES

From the two design axioms, many corollaries may be derived as a direct conse-
quence of the axioms. These corollanies may be more useful in making specific
design decisions, since they can be applied to actual situations more easily than
the original axioms. They even may be called design rules, and all-are derived from
the two basic axioms [10] (see Figure 9-2):

* Corollary 1. Uncoupled design with less information content. Highly cohesive
-objects can improve coupling because only a minimal amount of essential in-
formation need be passed between objects.

FIGURE 8-2
The origin of corollaries. Coroliaries 1, 2, and 3 are from both axioms, whereas corollary 4 |5
fram axiom 1 and corallaries 5 and & are from axiom 2,

Caoralkary 5




204 paRT FOUR: OBJECT-ORIENTED DESIGN

« Corollary 2. Single purpose. Each class must have a single, clearly defined pur-
pose. When you document, you should be able to easily describe the purpose of
a class in a few sentences,

. = Corollary 3. Large number of simple classes. Keeping the classes simple allows

reusability.

« Corollary 4. Strong mapping. There must be a strong association between the
physical system (analysis’s object) and logical design (design’s object).

s Corollary 5. Standardization, Promote standardization by designing inter-
changeable components and reusing existing classes or components.

» Corollary 6. Design with inheritance. Common behavior (methods) must be
moved 1o superclasses. The superclass-subclass structure must make logical
sense.

9.4.1 Coroliary 1. Uncoupled Design with Less Information
Content

The main goal here is to maximize objects cohesiveness among objects and soft-

ware components in order to improve coupling because only a minimal amount of
essential information need be passed between components.

9.4.1.1 Coupling Coupling is a measure of the strength of association estab-
lished by a connection from one object or software component 1o another. Cou-
pling is 4 binary relationship: A is coupled with B. Coupling is important when
evaluating a design because it helps us focus on an important issue in design. For
example. a change 10 one component of 3 system should have a minimal impact
on other components [3], Strong coupling among objects complicates a system,
since the class is harder to understand or highly interrelated with other classes. The
degree of coupling i5 a function of

1. How complicated the connection is,
2. Whether the connection refers to the object itself or something inside it.
3. What is being sent or received.

The degree, or strength, of conpling between two components is measured by
the amount and complexity of information transmitted between them. Coupling in-
creases (becomes stronger) with increasing complexity or obscurity of the inter-
face. Coupling decreases (becomes lower) when the connection is to the compo-
nent interface rather than to an internal component. Coupling also is lower for data
connections than for control connections. Object-oriented design has two types of
coupling: interaction coupling and inheritance coupling [3].

Interaction coupling involves the amount and complexity of messages between
components. It is desirable to have liule interaction. Coupling also applies to the
complexity of the message. The general guideline is to keep the messages as sim-
ple and infrequent as possible. In general, if a message connection involves more
than three parameters (e.g., in Method (X, Y, Z), the X, Y. and Z are parameters),
examine it 1o see if it can be simplified. It has been documented that objects con-
nected to many very complex messages are tightly coupled, meaning any change
to one invariability leads to a ripple effect of changes in others (see Figure 9-3).



CHAPTER 8 THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGH axioms 205

A B c
D E F
] I
g G H I

FIGURE 9-3
E is a tightty couplad object.

In addition to minimizing the complexity of message connections, also reduce
the number of messages sent and received by an object [3]. Table 9-1 contains dif-
ferent types of interaction couplings.

Inheritance is a form of coupling between super- and subclasses. A subclass s
coupled to its superclass in terms of attributes and methods. Unlike interaction
coupling, high inheritance coupling is desirable. However, 1o achieve high inheritance

TABLE 9-1

TYPES OF COUPLING AMONG OBJECTS OR COMPONENTS (shown from
highest to lowest)

Degree of
coupling Mame Description

Very high Content coupling The connection involves direct reference o atiribules
or methods of another object.

High Common coupling  The connection involves two objects accessing a
“global data space,” for both 1o read and write.

Medium Control coupling The connection involves axplicit control of the
processing logic of one object by anathar,

Low Stamp coupling The connecticn invoives passing an aggregate data

structure to another object, which uses only a
partion of the componants of the data structure.

Very low Data coupling The conneclion involves either simple data items or
aggregate structures all of whoze slements ane
used by the receiving object, This should be the
goal of an architeciural design,




206 rFanT FOUR: OBJECT-ORIENTED DESIGN

-

coupling in a system, each specialization class should not inherit lots of unrelated
and unneeded methods and attributes, For example, if the subclass is overwniting
most of the methods or not using them, this is an indication inheritance coupling
is low and the designer should look for an alternative generalization-
specialization structure (see Corollary 6).

9.4.1.2 Cohesion Coupling deals with interactions between objects or software
components. We also need to consider interactions within a single object or soft-
ware component, called cohesion. Cohesion reflects the “single-purposeness” of
an object. Highly cohesive components can lower coupling because only a mini-
mum of essential information need be passed between components. Cohesion also
helps in designing classes that have very specific goals and clearly defined pur-
poses (see Corollaries 2 and 3).

Methad cohesion, like function cohesion, means that a method should carry
only one function. A method that carries multiple functions is undesirable. Class
cohesion means that all the class's methods and attributes must be highly cohe-
sive, meaning to be used by internal methods or derived classes’ methods, Inheri-
tance cohesion is concerned with the following questions [3]:

+ How interrelated are the classes?
« Does specialization really portray specialization or is it just something arbitrary?

See Corollary 6, which alse addresses these questions.

9.4.2 Corollary 2. Single Purpose

Each class must have & purpose; as was explained in Chapter 7. Every class should
be clearly defined and necessary in the context of achieving the system’s goals.
When you document a class, you should be able to easily explain its purpose in a
sentence or two. If you cannot, then rethink the class and try to subdivide it into
more independent pieces. In summary, keep it simple; to be more precise, each
method must provide only one service, Each method should be of moderate size,
no more than a page: half a page is better.

9.4.3 Corollary 3. Large Number of Simpler Classes, Reusability

A great benefit results from having a large number of simpler classes. You cannot
possibly foresee all the future scenarios in which the classes you create will be
reused. The less specialized the classes are, the more likely future problems can
be solved by a recombination of existing classes, adding a minimal number of sub-
classes. A class that easily can be understood and reused (or inherited) contributes
to the overall system, while a complex, poorly designed class is just so much dead
weight and usually cannot be reused. Keep the following guideline in mind:

The smaller are your classes, the better are your chances of reusing them in other proj-

ects. Large and complex classes are tog specialized to be reused.

Object-oriented design offers a path for producing libraries of reusable parts [2].
The emphasis object-oriented design places on encapsulation, modularization, and



CHAFTER & THE OBJECT-ORIENTED DESIGN PROGESS AND DESIGN axioms 207

pelymorphism suggests rense rather than building anew. Cox's description of a
software IC library implies a similarity between object-oriented development and
building hardware from a standard set of chips [5]. The software IC library is re-
alized with the introduction of design patterns, discussed later in this chapter.

Coad and Yourdon argue that software reusability rarely is practiced effectively.
But the organizations that will survive in the 21st century will be those that have
achieved high levels of reusability—anywhere from 70-80 percent or more [3].
Griss [6] argues that, although reuse is widely desired and often the benefit of
utilizing object technology, many object-oriented reuse efforts fail because of too
namow a focus on technology and not on the policies set forth by an organization.
He recommended an institutionalized approach to software development, in which
software assets intentionally are created or acquired to be reusable. These assets
consistently are used and maintained to obtain high levels of reuse, thereby opti-
mizing the arganization's ability to preduce high-quality software products rapidly
and effectively [6].

Coad and Yourdon [3] describe four reasons why people are not utilizing this
concept:

1. Software engineering textbooks teach new practitioners to build systems from
“first principles”; reusability is not promoted or even discussed.

2. The “not invented here™ syndrome and the intellectual challenge of solving an
interesting software problem in one’s own unique way mitigates against reusing
someone else’s software companent,

3. Unsuccessful experiences with software reusability in the past have convinced
many practitioners and development managers that the concept is not practical.

4. Most organizations provide no reward for reusability; sometimes productivity
is measured in terms of new lines of code written plus a discounted credit (e.g.,
50 percent less credit) for reused lines of code.

The primary benefit of software reusability is higher productivity. Roughly
speaking, the software development team that achieves 80 percent reusability is
four times as productive as the team that achieves only 20 percent reusability. An-
other form of reusability is using a design pattern, which will be explained in the

next section.

5.4.4 Corollary 4. Strong Mapping

Object-oniented analysis and object-oriented design are based on the same model.
As the model progresses from analysis to implementation, more detail is added.
but it remains essentially the same. For example, during analysis we might iden-
tify a class Employee. During the design phase, we need to design this class—
design its methods, its association with other objects, and its view and access
classes. A strong mapping links classes identified during analysis and classes de-
signed during the design phase (e.g., view and access classes). Martin and Odell
describe this important issue very elegantly:



208 puAT FOUR: OBIECT-ORIENTED DESIGN

With OO0 technigues, the same paradigm is used for analysis, design, and implementa-

tion. The analyst identifies objects’ types and inheritance, and thinks about events thai

change the state of objects. The designer adds detail w this model perhaps designing

screens, user interaction, and client-server interaction. The thought process flows so nat-
urally from analyst to design that it may be difficult 1o tell where analysis ends and de-

sign begins. [8, p. 100]

9.4.5 Corollary 5. Standardization

To reuse classes, you must have a good understanding of the classes in the object-
oriented programming environment you are using. Most object-oriented systems,
such as Smalitalk, Java, C++, or PowerBuilder, come with several buili-in class
libraries. Similarly, object-oriented systems are like organic systems, meaning that
they grow as you create new applications. The knowledge of existing classes will
help you determine what new classes are needed to accomplish the tasks and
where you might inherit useful behavior rather than reinvent the wheel. However,
class libraries are not always well documented or, worse yet, they are documented
but not up to date. Furthermore, class libraries must be easily searched, based on
users' eriteria. For example, users should be able to search the class repository with
commands like “show me all Facet classes.” The concept of design patterns might
provide a way to capture the design knowledge, document it, and store it in a
repository that can be shared and reused in different applications.

9.4.6 Coroliary 6. Designing with Inheritance

When you implement a class, you have to determine its ancestor, what attributes
it will have, and what messages it will understand. Then, you have to construct its
methods and protocols. Ideally, you will choose inheritance to minimize the
amount of program instructions. Satisfying these constraints sometimes means that
a class inherits from a superclass that may not be obvious at first glance.

For example, say, you are developing an application for the government that
manages the licensing procedure for a variety of regulated entities. To simplify the
example, foous on just two types of entities: motor vehicles and restaurants. There-
fore, identifying classes is straightforward. All goes well as you begin to model
these two portions of class hierarchy. Assuming that the system has no existing
classes similar 1o a restaurant or a motor vehicle, you develop two classes, Mo-
torVehicle and Restaurant.

Subclasses of the MotorVehicle class are PrivateVehicle and CommercialVehi-
cle. These are further subdivided into whatever level of specificity seems appro-
priate (see Figure 9—4). Subclasses of Restaurant are designed to reflect their own
licensing procedures. This is a simple, easy to understand design, although some-
what limited in the reusability of the classes. For example, if in another project
you must build a system that models a vehicle assembly plant, the classes from
the licensing application are not appropriate, since these classes have instructions
and data that deal with the legal requirements of motor vehicle license acquisition
and renewal,



GHAPTER & THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGN axions 209

MuotorVehicle

=

PrivateVehicle Commercial Velicle

FIGURE 9-4
Thie initial single inheritance design.

In any case, the design is approved, implementation is accomplished, and the
system goes into production. Now, here comes the event that every designer hoth
knows well and dreads—when the nature of the real-world problem execeeds the
bounds of the system, so far an elegant design. Say, six months later, while dis-
cussing some enhancements to the system with the right people (we leamed how
to identify right people in Chapter 6), one of them says, “What about coffee wag-
ons, food trucks, and ice cream vendors? We're planning on licensing them as both
restaurants and motor vehicles”

You know you need to redesign the application—but redesign how? The an-
swer depends greatly on the inheritance mechanisms supported by the system’s
target language. If the language supports single inheritance exclusively, the
choices are somewhat limited. You can choose to define a formal super class to
both MotorVehicle and Restaurant, License, and move common methods and at-
iributes: from both clagses into this License class (see Figure 9-5). However, the
MotorVehicle and Restaurant classes have little in common, and for the most part,
their attributes and methods are inappropriate for éach other. For example, of
what nse is the gross weight of a diner or the address of a truck? This necessi-

FIGURE 8-5
The single inheritance design modified to allow licensing food trucks.

License

MotorVehiole Restanrant

F
[ I

PrivateVehicle Commercial Vehicle




210 PaRT FOUR: ORIECT-ORIENTED DESIGN

tates a very weak formal class (License) or numerous blocking behaviors in both
MotorVehicle and Restaurant, This particular decision results in the least reusable
classes and potentially extra code in several locations. So, let us try another ap-
prodch.

Altemnatively, you could preserve the original formal classes, MotorVehicle and
Restaurant, Next, define a FoodTruck class to descend from CommercialVehicle
and copy enough behavior into it from the Restaurant class to support the appli-
cation’s requirements (see Figure 9-6).

You can give FoodTruck copies of data and instructions from the Restaurant
class that allow it to report on food type, health code categories, number of chefs
and support staff, and the like. The class is not very reusable (Coad and Yourdon
call it cut-and-paste reusability), but at least its extra code is localized, allowing
simpler debugging and enhancement. Coad and Yourdon describe cut-and-paste
type of reusability as follows [4, p. 138]:

This is better than no reuse at all, but is the most primitive form of reuse. The clerical
cost of transcribing the code has largely disappeared with today’s cul-and-paste text ed-
itors; nevertheless, the software engineer runs the risk of introducing ermors during the
copying (and modifications) of the original code. Worse is the configuration manage-
ment problem: it is almost impossible for the manager to keep track of the multiple mu-
tated uses of the original “chunk” of code.

If, on the other hand, the intended language supports multiple inheritance, an-
other route can be taken, one that more ¢losely models the real-world situation. In
this case, you design a specialized class, FoodTruck, and specify dual ancestry.
Our new class aliernative seems lo preserve the integrity and code bulk of both an-
cestors and does nothing that appears to affect their reusability.

In-actuality, since we never anticipated this problem in the original design, there
probably are instance variables and methods in both ancestors that share the same
names. Most languages that support multiple inheritance handle these "hits" by
giving precedence to the first ancestor defined. Using this mechanism, reworking
will be required in the FoodTruck descendant and, quite possibly. in both ances-
tors (see Figure 9-7). It easily can become difficult to determine which method,

FIGURE 9-&
Alternatively, you can modify the single inheritance design to allow licensing food irucks,
Restaurant
MoworVehiole
PrivaeVehicle CommercialVehicle

Food Truck




CHAPTER & THE OBJECT-CRIENTED DESIGN PROCESS AND DESIGN axioms 211

MotorVehicle
.tP
I I
PrivareVehicle CommercialVehicle I Restarant

FIGURE 8-T
Multiple inheritance design of the system siructure,

in which class, affected an erroneously updated variable in an instance of a new
descendant. The difficulties in maintaining such a design increase geometrically
with the number of ancestors assigned to a given class.

9.4.6.1 Achieving Multiple Inheritance in a Single Inheritance System Sin-
gle inheritance means that each class has only a single superclass. This technigue
is used in Smalltalk and several other object-oriented systems. One result of using
a single inheritance hierarchy is the absence of ambiguity as to how an object will
respond to a given method; you simply trace up the class tree beginning with the
object’s class, looking for a method of the same name. However, languages like
LISP or C++ have a multiple inheritance scheme whereby objects can inherit be-
havior from unrelated areas of the class tree. This could be desirable when you
want a new class to behave similar fo more than one existing class. However, mul-
tiple inheritance brings with it some complications, such as how to determine
which behavior to get from which class, particularly when several ancestors define
the same method. It also is more difficult to understand programs written in a mul-
tiple inheritance system.

One way of achieving the benefits of multiple inheritance in a language with
single inheritance is to inherit from the most appropriate class and add an object
of another class as an attribute or aggregation. Therefore, as class designer, you
have two ways to borrow existing functionality in a class. One is to inherit it, and
the other is to use the instance of the ¢lass (object) as an attribute. This approach
is described in the next section.

9.4.6.2 Avoiding Inheriting Inappropriate Behaviors Beginners in an object-
oriented system frequently err by designing subclasses that inherit from inappro-
priate superclasses. Before a class inherits, ask the following questions:

* Is the subclass fundamentally similar to its superclass (high inheritance cou-
pling)?

* Is'it an entirely new thing that simply wants to borrow some expertise from its
superclass (low inheritance coupling)?



212 PART FOUR: QBJECT-ORIENTED DESIGN

Often you will find that the latter is true, and if so, you should add an attribute
that incorporates the proposed superclass’s behavior rather than an inheritance
from the superclass. This is because inheritors of a class must be intimate with all
its implementation details, and if some implementation is inappropriate, the in-
heritor’s proper functioning could be compromised. For example, if FoodTruck in-
herits from both Restaurant and CommercialVehicle classes, it might inherit a few
inappropriate attributes and methods. A better approach would be to inherit only
from CommercialVehicle and have an attribute of the type Restaurant (an instance
of Restaurant class). In other words, Restaurant class becomes a-part-of FoodTruck
class (see Figure 9-8),

9.5 DESIGN PATTERNS

In Chapter 4, we looked at the concept of patterns. A design pattern provides a
scheme for refining the subsystems or components of a software system or the re-
Tationships among them [1]. In other words, design patterns are devices that al-
Tow systems to share knowledge abowt their design, by describing commonly re-
curring structures of communicating compenents. that_solve a_general design
problem within a_particular context. For example, in programming, we have en-
“cotntered many problems that occurred before and will occur again, The question
we must ask ourselves is how we are going to solve it this time [7],

In Chapter 4, we learned that documenting patterns is one way that allows reuse
and possibly sharing information learned about how it is best to solve a specific
program design problem.

Essays usually are written by following a fairly well-defined form, and so is doc-
umenting design patterns (see Chapter 4 for the general form for documenting a
pattern). Let us take a look at a design pattern example created by Kurotsuchi [7].

= Pattern Name: Facade

* Ratipnale and Motivation: The facade pattern can make the task of accessing a
large number of modules much simpler by providing an additional interface
layer. When designing good programs, programmers usually attempt to avoid ex-
cess coupling between modules/classes. Using this pattern helps to simplify

FIGURE 95-8
The FoodTruck class inherits from CommiercialVehicle and has an attribute of the type Restaurant,
The ralationship between FoodTruck and Restaurant is a-part-of.

MotorVehicle
I ]
PrivateVehicle Commercial Vehicle
Food Treck

Restaserant




CHAPTER 9: THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGN axioMs 213

much of the interfacing that makes large amounts of coupling complex to use
and difficult to understand. In a nutshell, this is accomplished by creating a small
collection of classes that have a single class that is used 1o access them, the fa-
cade.

* Classes; There can be any number of classes involved in this “facade™ system,
but at least four or more classes are required: One client, the facade, and the
classes underneath the facade. In a typical situation, the facade would have a
limited amount of actual code, making calls to lower layers most of the time.

* Advamtages/Disadvanrages: As stated before, the pnmary advantage to using the
facade is to make the interfacing between many modules or classes more man-
ageable. One possible disadvantage to this pattern is that you may lose some
functionality contamed in the lower level of classes, but this depends on how the
facade was designed.

* Examples: Imagine that you need to write a program that needs to represent a
building as rooms that can be manipulated—manipulated as in intersacting with
objects in the room to change their state, The client that ordered this program
has determined that there will be a need for only a finite number of objects (e.g.,
windows. screens, projectors, etc.) possible in each room and a finite number of
operations that can be performed on each of them, You, as the program archi-
teet, have decided that the facade pattern will be an excellent way to keep the
amount of interfacing low, considering the number of possible objects in each
room, and the actions that the client has specified. A sample action for a reom
is (o “prepare it for a presentation.” You have decided that this will be part of
vour facade interface since it deals with a large number of classes but does nol
really need to bother the programmer with intéracting with each of them when
a room needs to be prepared. Here is how that facade might be organized (see
Figure 9-9). Consider the sheer simplicity from the client’s side of the problem.

FIGURE 9-9
Using a design pattern facade eliminates the pead for the Client elass to deal with 2 [amge num-
ber of classes.

Client

¥

Facabe

¢?¢

Projector Screen Window

¢ Y]
Somathing




214 PART FOUR; OBJECT-ORIENTED DESIGN

CHent
Projector Sereen Window
Something
FIGURE 9-10
Not utilizing the design pattern facade, the Client class needs fo deal with a large number of
classas.

A less thought-out design may have looked like this, making lots of interaction
by the client necessary (see Figure 9-10).

9.6 SUMMARY

In this chapter, we looked at the object-oriented design process and design axioms.
Integrating design axioms and corollaries with incremental and evolutionary styles
of software development will provide you a powerful way for designing systems.
During design, emphasis shifts from the application domain concept toward im-
plementation, such as view (user interface) and access classes. The objects dis-
covered during analysis serve as the framework for design.
The object-oriented design process consists of

Designing classes (their attributes, methods, associations, structures, and proto-
cols) and applying design axioms. If needed, this step is repeated.

» Designing the access layer.

* Designing the user interface.

» Testing user satisfaction and usability, based on the usage and use cases.

» Dterating and refining the design.

The two design axioms are

» Axiom |. The independence axiom. Maintain the independence of components.
» Axiom 2. The information axiom. Minimize the information content of the de-
sign.

The six design corollaries are

« Corollary 1. Uncoupled design with less information content.



CHAPTER 9 THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGN aAxioms 215

Corollary 2. Single purpose.

Corollary 3. Large number of simple ¢lasses,
Corollary 4. Strong mapping.

Corollary 5. Standardization.

Corollary 6. Design with inheritance,

Finally, we looked at the concept of design patterns, which allow systems to
share knowledge about their design. These describe commonly recurring problems.
Rather than keep asking how to solve the problem this time, we could apply the
design pattern (solution) in a previous probléem.

KEY TERMS

Axiom (p. 202)
Cohesion (p. 206)
Corollary (p. 202)
Coupling (p. 204)
Design pattern (p. 212)
Theorem (p. 202)

REVIEW QUESTIONS

1. What iz the tzk of design? Why do we nesd analysis?
2. What is the significance of Occam's razor?
3. How does Occam's razor relate to object-oriented design?
4. How would you differentiate good design from bad design?
5. What is the basic activity in designing an application?
6. Why i5 a large number of simple classes better than a small number of complex classes?
7. What is the significance of being able to describe in a few sentences what a class does?
8. What clues would you use to identify whether a-ciass is in need of revision?
9. What is the common occurrence in the first attempt of designing classes with inheri-
tance? How would you know? What should you do o fix it?
10. How can an chject-oriented system be thonght of as an organic svstem?
11. How can encapsulation, modularization, and polymorphism improve reusability? (Hint:
Review Chapter 2.)
12. Why are people not atilizing reusability? List some reasons.
13, Why is it important to know about the classes in the object-oriented programming sys-
tem you use’
14. How would you decide on subdividing your classes into a hierarchy of super- and sub-
classes?
15. What are the challenges in designing with inheritance?
16. Describe single and multiple inhentance.
17. What are the risks of a cut-and-paste type of reusability?
18. How can you achieve multiple inheritance in & single inheritance system?
19. How can you avoid a subelass inheriting inappropriste behavior?
20. List the object-oriented design axioms and corollaries,



216 PiAT FOUR: OBJECT-ORIENTED DESIGN

21. What is the relationship between coupling and cohesion?
22. How would you further refine your design?

PROBLEMS
1. Consult the World Wide Web or the library to obtain an article on the Booch design

method. Write a paper based on your findings.

2, Research the Web and write a report on the tools that support patierns-based design and

development.

3. Revisit the classes that you identified in the object-oriented analysis for the Grandma's

Soups application. What are some of the new classes or attributes and methods that must
be added for implementation?

4, The compilers used every day 1o process computer code are & prime example of the fa-

cade pattern in action. What other examples are there?

¥

2

Appleton, Brad. “Patterns and Software: Essential Concepts and Terminology.”
hitp:/fwww.enterict.com/~-bradapp/docs/pattern-intro.html, 1997,

. Blum, Bruce L. Software Engineering, a Holistic View, New York: Oxford University

Press, 1992,

. Coad, P and Yourdon, E. Object-QOriented Analysis. Englewood Cliffs. NJ: Yourdon

Press; 1991,

. Coad, P.; and Yourdon, E. Object-Oriented Design. Englewood Cliffs, NI: Yourdon

Press, 1991,

. Cox, B. 1. Object-Oriented Programming. Reading, MA: Addison-Wesley, 1986.
. Girss, M, L. “Software Reuse: Objects and Frameworks Are Not Enough” Object

Magazine 4, no, 9 (February 1995).

. Kurotsuchi, Brian T. “Design Patterns.” hutp://www.csec.calpoly edu/~dbutler/tutori-

alsfwinter6/patterns!,

. Martin, James; and Odell, James, Object-Oriented Analvsis and Design. Englewood

Cliffs, NI: Prentice-Hall, 19492,

. Rumbaugh, JTames; Blaha, Michael; Premerlani, William: Eddy, Frederick; and Lorenson,

William. Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall,
1991.

. Suh, Mam. The Principle of Destgn. New York: Oxford University Press, 1990,



Designing Classes

Chapter Objectives

You should be able to define and understand

* Designing classes,

* Designing protocols and cliss visibility.

* The UML object constraint language (OCL),
* Desipning methods.

10.1 INTRODUCTION

Ohbject-oriented design requires taking the objects identified during object-oriented
analysis and designing classes to represent them. As a class designer, you have 1o
know the specifics of the class you are designing and be aware of how that class
interacts with other clagses. Once you have identified your classes and their inter-
actions, you are ready to design classes. '

Underlying the functionality of any application is the quality of its design. In
this ch_ap_l_gr, we |ook at guidelines and approaches to use in designing classes and

their methods. Although the design concepts to Bé discussed in this chapter are
s al;'we will concentrate on designing the business classes (see Chapter 6). The
access and view layer classes will be described in the subsequent chapters. How-
ever, the same concepts will apply to designing access and view layer classes.

10.2 THE OBJECT-ORIENTED DESIGN PHILOSOPHY

Object-oriented development requires that you think in terms of classes, A great
benefit of the object-oriented approach is that classes organize related properties
into units that stand on their own. We go through a similar process as we leamn

217



218 PRt FOUR: OBRIECT-ORIENTED DESIGN

about the world around us. As new facts are acquired, we relate them to existing
structures in our environment (model). After enough new facts are acquired about
a certain area, we creaté new structurés o accommodate the greater level of detail
in our knowledge.

The single most important activity in designing an application is coming up
with a set of classes that work together to provide the functionality you desire. A
given problem always has many solutions, However, al this stage, you must trans-
late the attributes and operations into system implementation, You need 1o decide
where in the class tree your new classes will go. Many object-oriented program-
ming languages and development énvironments, such as Smalltalk, C++, or
PowerBuilder, come with several built-in class libraries. Your goal in using these
systems should be to reuse rather than create anew. Similarly, if you design your
classes with reusability in mind, you will gain a lot in productivity and reduce the
time for developing new applications.

The first step in building an application, therefore, should be (o design a set of
classes, each of which has a specific expertise and all of which can work together
in useful ways, Think of an object-oriented system a$ an organic system, one thal
evolves as you create each new application. Applying design axioms (see Chapter
9} and carefully designed classes can have a synergistic effecl. not only on the cur-
rent system but on its future evolution. If you exercise some discipline as you pro-
ceed, you will begin 1o see some extraordinary gains in your productivity com-
pared 1o a conventional approach.

10.3 UML OBJECT CONSTRAINT LANGUAGE

In Chapter 5, we learned that the UML is a graphical language with a set of rules
and semantics, The rules and semantics of the UML are expressed in English, in
a form known as object constraint language. Object constraint language (OCL)
is a specification language that uses simple logic for specifying the properties of
a system.

Many UML modeling constructs require expression; for example, there are ex-
pressions for types, Boolean values, and numbers. Expressions are stated as strings
in ohject constraint language. The syntax for some common navigational expres-
sions is shown here. These forms can be chained together. The leftmost element
must be an expression for an object or a set of objects. The expressions are meant
to work on sets of values when applicable.

-R?lem..rr!e_-frar. The selector is the name of an atribute in the item. The result is
. 4" the value of the atiribute; for example, John.age (the age is an attribute of the
o) object John, and John.age represents the value of the atribute),

« Jtem.selector [qualifier-value]. The selector indicates a qualified association that
qualifies the item. The result is the related object selected by the qualifier; for
example, array indexing as a form of qualification; for example, John. Phone[2],
assuming John has several phones.

o Set —=> select (hoolean-expression). The Boolean expression is written in terms



CHAPTER 10: DESIGMING CLasses 219

of objects within the set. The resull is the subset of objects in the set for which

the Boolean expression is true; for example, company.employee => salary = 30000.
This represents employees with salaries over $30,000.

Other expressions will be covered as we study their appropriate UML notations.
However, for more details and syntax, see UML OCL documents,

10.4 DESIGNING CLASSES: THE PROCESS

In Chapter 9, we looked at the object-oriented design process. In this section, we
concentrate on step 1 of the process, which consists of the followings activities:

1. Apply design axioms to design classes, their attributes, methods, associations,
structures, and protocols,
L.1. Refine and complete the static UML class diagram by adding details to
that diagram.
L.1.1. Refine attributes.
1.1.2. Design methods and the protocols by utilizing a UML activity dia-
gram to represent the method's algorithm,
1.1.3. Refine the associations between classes (if required).
L.1.4. Refine the class hierarchy and design with inhertance (if reguired).
1.2, lterate and refine.

Object-oriented design is an iterative process. After all, design is as much about
discovery as construction, Do not be afraid to change your class design as you gain
experience, and do not be afraid to change it a second, third, or fourth time. At
each iteration, you can improve the design. However, the trick is to correct the de-
sign flaws as early as possible; redesigning late in the development cycle always
is problematic and may be impossible.

10.5 CLASS VISIBILITY: DESIGNING WELL-DEFINED PUBLIC,
PRIVATE, AND PROTECTED PROTOCOLS '

In designing methods or attributes for classes, you are confronted with two prob-
lems. One is the protocol, or interface to the class operations and its visibility; and
the other is how it is implemented, Often the two have very little to do with each
other. For exiample, you might have a class Bag for collecting various objects thal
counts multiple ocouwrrences of its elements. One implementation decision might
be that the Bag class uses another class, say, Dictionary (assuming that we have a
class Dictionary ). to actually hold its elements. Bags and dictionaries have very lit-
tie in common, so this may seem curious to the outside world. Implementation, by
definition, 18 hidden and off limits to other objects. The cliss’s protocol, or the
messages that a class understands, on the other hand, can be hidden from other ob-
jects (private protocol) or made available o other objects (public protocol). Pub-
lic protocols define the functionality and external messiges of an object; private
protocols define the implementation of an object (see Figure 10-1).



220 PuRT FOUR: ORJECT-DRIENTED DESIGN

Privag Lal} profeecd

Messages

Subclass

FIGURE 10-1 g
Fublic protocols define the funclionality and exiernal massapes of an object, while private prote-
colz define tha implemientation of an object.

It is important in object-oriented design to define the public protocol between
the associated classes in the application. This is a set of messages that a class of
a certain generic type must understand, although the interpretation and implemen-
tation of each message is up to the individual class.

A class also might have a set of methods that it uses only internally, messages
to itself. This, the private protocol (visibility) of the class, includes messages that
normally should not be gent from other objects; it is accessible only 1o operations
of that class. In private protocol, only the class itsélf can use the method. The pub-
lic protocol (visibility) defines the stated behavior of the class as a citizen in a pop-
ulation and is important information for users as well as future descendants, so it
is accessible to all classes. If the methods or attributes can be used by the class it-
self or 1ts subclasses, a protected protocol can be used. In a profected protocol (vis-
ihility). subclasses the can use the method in addition to the class itself.

Lack of a well-designed protocol can manifest itself as encapsulation leakage.
The problem of epcapsulation leakage occurs when details about a class’s inter-
nal implementation are disclosed through the interface. As more internal details
become visible, the flexibility to make changes in the future decreases, If an im-
plementation is completély open, almost no flexibility is retained for future
changes. It is fine to reveal implementation when that is intentional, necessary, and



CHAPTER 10: DESIGNING CLASSES 221

carefully controlled. However, do not make such a decision lightly because that
could impact the flexibility and therefore the quality of the design.

For example, public or protected methods that can access private attributes can
reveal an important aspect of your implementation. If anyone uses these functions
and you change their location, the type of attribute, or the protocol of the method,
this could make the client application inoperable,

Design the interface between a supérclass and its subclasses just as carefully as
the class’s interface to clients; this is the contract between the super- and sub-
classes. If this interface is not designed properly, it can lead to violating the en-
capsulation of the superclass. The protected portion of the class interface can be
accessed only by subclasses, This feature is helpful but cannot express the totality
of the relationship between a class and its subclasses. Other important factors in-
clude which functions might or might not be overridden and how they must behave.
It alzo is crucial to consider the relationship among methods. Some methods might
need to be overridden in groups to preserve the class's semantics. The bottom line
is this: Design your interface to subclasses so that a subclass that uses every sup-
ported aspect of that interface does not compromise the integnty of the public in-
terface. The following paragraphs summarize the differences between these layers.

10.5.1 Private and Protected Protocol Layers: Internal

Items in these layers define the implementation of the object. Apply the design ax-
ioms and corollaries, especially Corollary 1 {uncoupled design with less informa-
ton content, see Chapter 9) to decide what should be private: what atiributes (in-
stance variables)? What methods? Remember, highly cohesive objects can improve
coupling because only a minimal amount of essential information need be passed
between objects.

10.5.2 Public Protocol Layer: External

Items in this layer define the functionality of the object. Here are some things to
keep in mind when deslgmng class protocals:

* Good design allows for polymorphism.
* Not all protocol should be public; again apply design axioms and corollaries.

The following key questions must be answered:

* What are the class interfaces and protocols?

* What public (external) protocol will be used or what external messages must the
systemn understand?

* What private or protected (intermal) protocol will be used or what internal mes-
sages or messages from a subclass must the system understand?

10.6 DESIGNING CLASSES: REFINING ATTRIBUTES

Attributes identified in object-oriented analysis must be refined with an eye on im-
plementation during this phase. In the analysis phase, the name of the attribute was
sufficient. However, in the design phase, detailed information must be added to the



222 pART FOUR: OBRJECT-ORIENTED DESIGN

model {especially, that defining the class attributes and operations). The main goal
of this activity is to refine existing antributes (identified in analysis) or add attrib-
utes that can elevate the system into implementation.

10.6.1 Attribute Types
The three basic types of attributes are

1. Single-value atinbutes,
2. Multiplicity or multivalue attributes.
3. Reference to another object, or instance connection.

Attributes represent the state of an object. When the state of the object changes,
these changes are reflected in the value of attributes. The single-value attribute is
the most common attribute type. It has only one value or state. For example, at-
tributes such as name, address, or salary are of the single-value type.

The multiplicity or multivalue attribute is the opposite of the single-value at-
tribute since, as its name implies. it can have a colléction of many values al any
point in time [2]. For example, if we want to keep track of the names of people who
have called a customer support line for help. we must use the multivalues attributes.

Instance connection attributes are required o provide the mapping needed by
an object to fulfill its responsibilities, in other words, instance connection model
association. For example, a person might have one or more bank accounts. A per-
son has zero to many instance connections to Account(s). Similarly, an Account
can be assigned to one or more persons (i.e., joint account). Therefore, an Account
also has zero to many instance connections to Person(s).

10.6.2 UML Attribute Presentation

As discussed in Chapter 5, OCL can be used during the design phase to define the
class attributes. 'Il"he fulluwm; is the attribute presentation suggested by UML:

visibility rmme : Iype- e.rpressmn ={nitial-value
Where visibiliry is one of the following:

+  public visibility {accessibility to all classes),
#  protected visibility (accessibility to subclasses and operations of the class).
—  private visibility (accessibility only to operations of the class).

Tyvpe-expression is a language-dependent specification of the implementation
type of an attribute.

Initial-value is a language-dependent expression for the initial value of a newly
created object. The initial value is optional, For example, +size: lenpth = 100

The UML style guidelines recommend beginning attribute names with a lower-
case letter

In the absence of a multiplicity indicator (array), an auribute holds exactly one
value. Multiplicity may be indicated by placing a multiplicity indicator in brack-
ets after attribute name; for example,



CHAPTER 10: DESIGNING cLassEs 223

names[10]: String

points[2..*]: Point

The multiplicity of 0..1 provides the possibility of null values: the absence of a
value, as opposed to a particular value from the range. For example, the following
declaration permits a distinction between the null value and an empty string;
name[0..1]; String

10.7 REFINING ATTRIBUTES FOR THE VIANET BANK OBJECTS

in this section, we go through the ViaNet bank ATM system classes and refine the
attributes identified during object-oriented analysis (see Chapter 8).

10.7.1 Refining Attributes for the BankClient Class
During object-oriented analysis, we identified the following attributes (see Chap-
ter 8):

firstName

lastName

pinNumber

cardNumber

At this stage, we need to add more information to these attributes, such as vis-

ibility and implementation type. Furthermore, additional attributes can be identi-
fied during this phase to enable implementation of the class:

#irstName: String

#lastMame: String

#pinNumber: String

#cardMumber: String

#account; Account (instance connection)

In Chapter 8, we identified an association between the BankClient and the Ac-
count classes (see Figure 8-9). To design this association, we need to add an ac-
count attribute of type Account, since the BankClient needs to know about his or
her account and this attribute can provide such information for the BankClient
class, This is an example of instance connection, where it represents the associa-
fion between the BankClient and the Account objects, All the attributes have been
given protected visibility,

10.7.2 Refining Attributes for the Account Class

Here is the refined list of attributes for the Account class;

#mumber: String
#balance: float



224 PuET FOUR: OBJECT-ORIENTED DESIGN

#rangaction: Transaction (This attribute is needed for implementing the associ-
‘ation between the Account and Transaction classes.)
#bankClient; BankClient (This attribute is needed for implementing the associ-
ation between the Account and BankClient classes.)

At this point we must make the Account class very general, so that it can be
reused by the checking and savings accounts.

10.7.3 Refining Attributes for the Transaction Class
The attributes for the Transaction class are these:

#transIDy: String

#ransDate: Date

#ransTime: Time

#ransType: String

tamount: float

#posiBalance: float

Problem 10.1

Why do we not need the account attribute for the Transaction class? Hint: Do
transaction objects need to know about account objects?

10.7.4 Refining Attributes for the ATMMachine Class
The ATMMachine class could have the following attnibutes:

#address; Suing
#atate: String

10.7.5 Refining Attributes for the CheckingAccount Class

Add the savings attribute 1o the class. The purpose of this attribute is to implement
the association between the CheckingAccount and SavingsAccount classes.

10.7.6 Refining Attributes for the SavingsAccount Class

Add the checking attribute to the class. The purpose of this attribute is to imple-

ment the association between the SavingsAccount and CheckingAccount classes.
Figure 10-2 (see Chapter 8) shows a more complete UML class diagram for

the bank system. At this stage, we also need to add a very short description of each

attribute or certain attribute constraints. For example,

Class ATMMachine

#address: String (The address for this ATM machine.)

#utate: String (The state of operation for this ATM machine, such as running,
off, idle, out of money, security alarm,)



CHAFTER 10: DESIGNING CLASSES 225

Bank
o
) 4]
| ‘BankClient
| EfirsiName : String I
#lastName | String ATMMachine
#cordNumber © String e e e S — #aiddress | String
#pinNumber ; String #state - Sinng
Sgecount © Account
|
Has | | Transaction
dAsocunt ftransiD - String
#number : Sirng i . #transCiate ; Dyile
.2 #balance : flow Account-Transaction #iransTime : Time
fbankClient - BankClient | #ransType : String
#iransaction : Transaction i'm;n;::l : Hgl
# post fece - Flosad
| |
CheclingAccount 1 Savings Checking SavingeAccount
REAVIOLES | Account . #checking @ Accouni
FIGURE 10-2

A more complate UML class diagram for the ViaNel bank system,

10.8 DESIGNING METHODS AND PROTOCOLS

The main goal of this activity is to specify the algorithm for methods identified so
far. Once you have designed your methods in some formal structure such as UML
activity diagrams with an OCL description, they can be converted to programming
language manually or in automated fashion (i.e., using CASE tools), A class can
provide several types of methods [3]:

* Constructor. Method that creates instances (objects) of the class,

* Destructor. The method that destroys instances.

* Conversion method. The method that converts a value from one unit of measure
Lo anather,

* Copy method. The method that copies the contents of one instance to another
instance.

* Atrribute ser. The method that sets the values of one or more attributes.

* Antribure get. The method that returns the values of one or more attributes,

+ /0 merhods, The methods that provide or receive data to or from a device,

* Domain specific. The method specific to the application.

Recall from Chapter 9. Corollary 1, that in designing methods and protocols you
must minimize the complexity of message connections and keep as low as possi-
ble the number of messages sent and received by an object. Your goal should be



226 PART FOUR: OBIECT-ORIENTED DESIGN

to maximize cohesiveness among objects and software components to improve
coupling, because only a minimal amount of essential information should be
passed between components. Abstraction leads to simplicity and straightforward-
ness and, at the same time, increases class versatility, The requirement of simpli-
fication, while retaining functionality, seems to lead to increased utility. Here are
five rules [1]:

1. If it looks messy, then it's probably a bad design.

2. If it is too camplex, then it’s probably a bad design.
3, If it is too big, then it's probably a bad design.

4. If people don’t like it, then it’s probably a bad design,
5. If it doesn't work. then it's probably a bad design.

10.8.1 Design Issues: Avoiding Design Pitfalls

As described in Chapter 9, it is important to apply design axioms to avoid com-
mon design problems and pitfalls. For example, we learned that it is much better
to have a large set of simple classes than a few large, complex classes. A common
occurrence is that, in your first attempt, your class might be 1o big and therefore
more complex than it needs to be. Take the time to apply the design axioms and
corollaries, then critique what you have proposed. You may find you can gather
common pieces of expertise from several classes. which in itself becomes another
“peer” class that the others consult; or you might be able to create a superclass for
several classes that gathers in a single place very similar code. Your goal should
be maximum reuse of what you have to avoid creating new classes as much as pos-
sible. Take the time to think in this way—good news, this gets easier over time.

Lost object focus is another problem with class definitions, A meaningful class
definition starts out simple and clean but, as time goes on and changes are made,
becomes larger and larger, with the class identity becoming harder to state con-
cisely (Corollary 2. This happens when you keep making incremental changes (o
an existing class. If the class does not quite handle a situation, someone adds a
tweak to its description. When the next problem comes up, another tweak is added.
Or, when a new feature is requested, another tweak is added, and so on. Apply the
design axioms and corollaries, such as Corollary 2 (which states that each class
must have a single, clearly defined purpose). When you document, you easily
should be able to describe the purpose of a class in a few sentences.

These problems can be detected early on. Here are some of the warning signs
that something is going amiss. There are bugs because the internal state of an ob-
ject is too hard to track and solutions consist of adding paiches. Patches are char-
acterized by code that looks like this: “If this is the case, then force that (o be true”
or “Do this just in case we need to” or “Do this before calling that function, be-
cause it expects this."

Some possible actions to solve this problem are these:

« Keep a careful eye on the class design and make sure that an object’s role re-
mains well defined, If an object loses focus, you need to modify the design. Ap-
ply Corollary 2 (single purpose).



OHAFTER 10! DESIGNING CLassEs 22T

* Move some functions into new classes that the object would use. Apply Corol-
lary | (uncoupled design with less information content).

* Break up the class into two or more classes, Apply Corollary 3 (large number of
simple classes).

* Rethink the class definition based on experience gained.

10.8.2 UML Operation Presentation

The following operation presentation has been suggested by the UML. The oper-
ation syntax 1s thig:

visibility name: (parameter-list): renem-rype-expression C—
Where visibility i one of:

+  public visibility {accessibility 1o all classes), _
# protected visibility (accessibility to subclasses and operations of the class),
= private visibility (accessibility only to operations of the class).

Here. name 15 the name of the operation.

Parameter-list: is a list of parameters, separated by commas, each specified by
name: type-expression = default value (where name is the name of the parameter,
type-expression is the language-dependent specification of an implementation
type. and default-value is an optional value).

Return-type-expression; is a language-dependent specification of the imple-
mentation of the value returned by the method. If return-type is omitted, the oper-
ation does not return a value:; for example,

+getMame(): aName
+ getAccountNumber (account: type): account Number

The UML guidelines recommend beginning operation names with a lowercase let-
ier.

10.9 DESIGNING METHODS FOR THE VIANET BANK OBJECTS

Al this point, the design of the bank business model is conceptually complete. You
have identified the objects that make up your business layer, as well as what ser-
vices they provide. All that remains is (o design methods, the user interface, data-
‘base access, and implement the methods using any object-oriented programming
language. To keep the book language independent. we represent the methods® al-
gorithms with UML actwlty diagrams, which very easily can be translated into any
language. In essence, this phase prepares the system for the implementation. The
actual coding and implementation (although they are beyond the scope of this
book) should be relatively easy and, for the most part, can be automated by using
CASE tools. This is because we know what we want to code, It is always difficult
to code when we have no clear understanding of what we want to do.



228 pPiRT FOUR: OBJECT-ORIENTED DESIGN

I BankClient:4verfyPassword (cardNumber; String; aPIN:Siring paClient; BankClient

aClent = refrieveCliznt

(CardNumber, aPIN) FeettievelCHent (candMumber String, aFIN-Smng i eClhens BankCliem

il o Display “Incomrect F’lﬂ)
PIN valid PIN not valid "'\ pleaie try again”

Frovide sccess
1o the account

FIGURE 10-3

An activity diagram for the BankClient class verfyPassword method, using OCL fo deseribe the
diagram. The syntax for descriting & class's method is Class name:methodiame. We postpone
design of the retrieveClient to Chapter 11, Section 11.10. Designing Access Layer Classas,

10.9.1 BankClient Class VerifyPassword Method

The following describes the verifyPassword service in greater detail. A client PIN
code is sent from the ATMMachine object and used as an argument in the verify-
Password method, The verifyPassword method retrieves the client record and
checks the entered PIN number against the client’s PIN number. If they match, it
allows the user to proceed. Otherwise, a message sent to the ATMMachine dis-
plays “Incorrect PIN, please try again™ {see Figure 10-3),

The verifyPassword methods performs first creates a bank client object and
attempts to retrieve the client data based on the supplied card and PIN numbers,
At this stage, we realize that we need to have another method, retrieveClient. The
retrieveClient method takes two arguments; the card number and a PIN number,
and returns the client object or “nil" if the password is not valid. We postpone
design of the retrieveClient method to Chapter 11 (Section 11.10, designing the
dccess layer classes).

10.9.2 Account Class Deposit Method

The following describes the deposit service in greater detail. An amount to be de-
posited is sent to an account object and used as an argument to the deposit ser-
vice. The account adjusts its balance to its current balance plus the deposit
amount. The account object records the deposit by creating a transaction ohject
containing the date and time, posted balance, and transaction type and amount
{see Figure 10-4),

Once again we have discovered another method, updateClient. This method, as
the name suggests, updates client data, We postpone design of the updateClient
method to the Chapter 11 (designing the access layer classes).



CHAPTER 10! DESIGNING CLASSES 229

(balance = balance + snAmount) - Account:+deposi (anAmouni:Float)

(: Update client accoant ) Account:#updateAccount (number, balance)

(-_ Creste Transaction ) Account:#create Transaction( "depotit’, anAmount, balance)

FIGURE 10-4
An activity diagram for the Account class deposit method.

10.9.3 Account Class Withdraw Method

This is the generic withdrawal method that simply withdraws funds if they are
available. It is designed to be inherited by the CheckingAccount and SavingsAc-
count classes to implement automatic funds transfer. The following describes the
withdraw method. An amount to be withdrawn is sent to an account object and
used as the argument to the withdraw service. The account checks its balance for
sufficient funds. If enough funds are available, the account makes the withdrawal
and updates its balance; otherwise, it returns an error, saying “insufficient funds.”
If successful, the account records the withdrawal by creating a transaction object
containing date and time, posted balance, and transaction type and amount (see
Figure 10-5).

10.9.4 Account Class CreateTransaction Method

The createTransaction method generates a record of each transaction performed
ggainst it. The description is as follows, Each time a successful transaction is

FIGURE 10-5
An activity diagram for the Account class withdraw mathod.

Account:ewithdraw (prAmount: Floa):RemmCode: Siring
balance < anAmount RemmCode =
ba e gt =\ “Insufficient funds"

elient secount Account::# update Accoumt (mumber, balance)

Create Tranzaction )  Account:#create Transaction] “Withdraw®, enAmount, balarce)

8




230 riRT FOUR: OBJECT-ORIENTED DESIGN

Account: MereateTranssction (alype-Siring, anAmount:float, pBalance: float)

#Tran. postBalance
= pBalance

aTran transDate
= date (today)

ATTan, Amount aTren ransTime
= @A AmownL = tirme(now)

FIGURE 10-6 :
An activity diagram for the Account class createTransaction method,

performed against an account, the account object creates a transaction object to
record it. Arguments into this service include transaction type (withdrawal or
deposit), the transaction amount, and the balance after the transaction. The account
creates a new transaction object and sets its attributes to the desired information.
Add this description 1o the creareTransaction’s description field (see Figure
106,

10.9.5 Checking Account Class Withdraw Method

This is the checking account-specific version of the withdrawal service. It takes
into consideration the possibility of withdrawing excess funds from a companion
savings account. The description is as follows, An amount to be withdrawn is sent
to a checking account and used as the argument to the withdrawal service. If the
account has insufficient funds to cover the amount but has a companion savings
account, it tries to withdraw the excess from there, If the companion account has
insufficient funds, this method returns the appropriate error message, If the com-
panion account has enough funds, the excess is withdrawn from there, and the
checking account balance goes to zero (0). If successful, the account records the
withdrawal by creating a transaction object containing the date and time, posted
balance, and transaction type and amount (see Figure 10-7).

10.9.6 ATMMachine Class Operations

The ATMMachine class provides an interface (view) to the bank system. We post-
pone designing this class to Chapter 12.

10.10 PACKAGES AND MANAGING CLASSES

A package groups and manages the modeling elements, such as classes, their as-
sociations, and their structures, Paclkages themselves may be nested within other
packages. A package may contain both other packages and ordinary model ele-



CHAPTER 10! DESIGNING CLAsSES 231

Checking Account:+withdmaw (anAmount: etk ResumnCode: String

Withdraw using A witkickidi
[ﬂccuum clags me’umd) S tiymou)

gecoaint
insafficient funds Dioegn t hitve s3vings account
Has savings account
uffic FavingsAccountwithdr
e Py SavingsAcoountbalance-
{anAmouant —
Check Accouni.balance )
J withdraw using Vo
SavingsAccount method
L
( retumCode ) ( refurnCode =
= OK insufficient funds Insufficient funds

sufficient finds

FIGURE 10-T7
An aclivity diagram for the CheckingAccount class withdrawal mathod.

y

ments, The entire system description can be thought of as a single high-level sub-
system package with everything else in it. All kinds of UML model elements and
diagrams can be organized into packages. For example, some packages may con-
tain groups of classes and their relationships, subsystems, or models. A package
provides a hierarchy of different system components and can reference other pack-
ages. For example, the bank system can be viewed as a package that contains other
packages, such as Account package, Client package, and so on. Classes can be
packaged based on the services they provide or grouped into the business classes,
access classes, and view classes (see Figure 10-8). Furthermore, since packages
own model elements and model fragments, they can be used by CASE tools as the
basic storage and: access control.

In Chapter 5, we learned that a package is shown as a large rectangle with a
small rectangular tab. If the contents of the package are shown, then the name of
the package may be placed within the tab. A keyword string may be placed above
the package name. The keywords subsvstem and model indicate that the package
i5 & meta-model subsystem or model. The visibility of a package element outside
the package may be indicated by preceding the name of the element by a visibil-
ity symbol (+ for public, — for private. # for protected). If the element is in an in-
ner package, its visibility as exported by the outer package is obtained by com-
bining the visibility of an element within the package with the visibility of the
package itself: The most restrictive visibility prevails.



232 PART FOUR: OBJECT-ORIENTED DESIGN

Bank
o
BankClient
FfirstiName : String
#iastName : String ATMMachine
WesrdMumber : Sming L o e e e ——po—— Haddress : String
#pinMNumbher ; String # stivle - String
bseeount @ Accoant
Hu::ymw:du Agcount Transection
'I 5 o "
. ':‘:S'm'lsﬁ”n:f #transiD ; String
#bankClient - BankClient | , ||| el Take
1.2 i R e i Arcount-Tronsaction | #ransTime © T'II_D:
0 #iransType - Saring
+wd|d1d=pnmﬂ:-:] I #ramount ; float
: #postBalamce - foat
:TMMIEI:::{; Haccount - Account
fereate Transactiond}
I Q 1
CheckingAceount |, Savings Checking | SavingsAocount
#aivings © Account ! #l:h:l:l.'ing i Aceounl
+withdraw )
FIGURE 10-8
More complete UML class diagram for the ViaNel bank ATM aystem. Note that the method pa-
amater list is not shawn,

Relationships may be drawn between package symbols to show relationships
between at least some of the elements in the packages. In particular, dependency
between packages implies one or more dependencies among the elements. Figure
10-9 depicts an even more complete class diagram the ViaNet bank ATM system.

10.11 SUMMARY

The single most important activity in designing an application is coming up with
a set of classes that work together to provide the needed functionality. After all,
underlying the functionality of any application is the quality of its design.

This chapter concentrated on the first step of the object-onented design process,
which consists of applying the design axioms and corollaries to design classes,
their attnibutes, methods, associations, structures, and protocols; then, iterating and
refining.

During the analysis phase, the name of the attribute should be sufficient. How-
ever, during the design phase. detailed information must be added to the model (es-
pecially, definitions of the clase attributes and operations). The UML provides a
language to do just that. The rules and semantics of the UML can be expressed in
English, in a form known as ebject constraint language (OCL). OCL is a specifi-
cation language that uses simple logic for specifying the properties of a system.



CHAPTER 10: DESIGNING CLASSES 233

ViaNet Bank ATM System |
BankClient
#firstName : String =
#lsthame : Siring ATMMachine
#cardNumber : String — o | #addres: ; String
WpinMumber . String # state ; Sinng
#account ; Account _—_ﬂ
___—I oo +\'|:nt'y'P:;sswu|‘dH
1.2 Aceount Transaction
#number ; String #iransiD : Siring
#halance : float HiraneDiale | Date
fbankCliem : BankCliznt | « . #ranaTime : Time
#transaction : Transactipn | Acceunt-Transaetion #ransType - String
+ileposit() 1 #amount : finat
Fwithdraw(} #postBalance : float
NretrieveAceouni( ) #account : Account
HupdnteAccounti )
#ereme Transaction )
|1 4 1
Checking Accoum [ Savings-Checking Savingshecount
Heavings : Account " fichecking . Accoant
+irithdraw )
FIGURE 10-9

Tha ViaNet bank ATM system package and its subsystems.

Lack of a well-designed protocol can manifest itself as encapsulation leakage.
This problem occurs when details about a class’s internal implementation are dis-
closed through the interface. As more internal details become visible, the flexibil-
ity for making changes in the future is decreased. If an implementation is com-
pletely open, almost no flexibility is retained for furure changes, Decide what
aitributes and methods should be private, protecied, or public. Use private and pro-
tected protocols to define the implementation of the object; use public protocols
to define the functionality of the object.

Remember five rules to avoid bad design:

L. If it looks messy, then it's probably a bad design.

2. If it is too complex, then it's probably a bad design.
3. Ifit is too big, then it's probably a bad design.

4. If people don’t like it, then it's probably a bad design,
5. IFit doesn’t work, then it’s probably a bad design,

The UML package is a grouping of model elements. It can organize the mod-
cling elements including classes. Packages themselves may be nested within other
packages. A package may contain both other packages and ordinary model ele-
ments. The entire system description can be thought of as a single, high-level sub-
system package with everything else in it.



234 PART FOUR: OBJECT-ORIENTED DESIGN

Object-oriented design is an iterative process. Designing is as much about dis-
covery as construction. Do not be afraid to change a class design, based on expe-
rience gained, and do not be afraid to change it a second, third, or fourth time. At
each iteration, vou can improve the design. However, the trick is to fix the design
as early as possible; redesigning late in the development cycle is problematic and
may be impossible.

KEY TERMS

Encapsulation leakage (p. 220)

Object constraint language (OCL) (p. 218)
Private protocol (visibility) (p. 220)
Protocol (p. 219}

Protected protocol (visibility) (p. 220)
Public protocol (visibility) (p. 220)

REVIEW QUESTIONS

1. What aré public and private protocols? What is the significance of separating these two
protocols?

2. Whal are some characteristics of a bad design?

3. One of the most important skills you can develop is questioning your design, which
causes you to think, “Wait a minute, this is starung to get messy.” What are some other
warming signs that things are about 1o go amiss?

4. How do design axioms help avoid design pitfalls?

5. Name some problems that come from the lack of a well-designed protocol; for example,
giving every method and auribute public visibility.

6. We learned that, 1o design association, we need to add an instance connection attribute
1o a class, In a client-server association, does the server need to know aboul the client?
In other words, must we add instance ¢onnection attributes of the client in the server
clage?

PROBLEMS

1. Which corollary (or corollaries) would you apply to design well-defined public, private.
and protected protocols?

2. To solve some of the design pitfalls, we could apply the following corollanes. Please ap-
ply esch corollary and explain how the design axioms and corollanes can help in avoid-
ing design axioms:

» Keepa careful eye on the class design and make sure that an object’s role remaing well
defined. If an object loses focus, you need to modify the design. Apply Corollary 2
(single purpose).

« Move some functions into new classes that the object would use. Apply Corollary |
(uncoupled design with less information content).

« Break up the class into two or more classes. Apply Corollary 3 (large number of sim-
ple classes),

3. Design the quese, order quetie, and inventory queue classes in the Grandma's Soups ap-
plication (see Chapler G).



CHAPTER 10: DESIGNING CLASSES 235

1. Gause, Donald G.; and Weinberg, G, M. Exploring Requirements: Quality Before De-
sign. New York: Dorset House, 1989,

= Norman, Ronald. Object-Oriented Systems Analysis and Design. Englewood Cliffs, NI
Prentice-Hall, 1996,

3. Texel, Putnam; and Williams, Charles B. Use Cases Combined with Bodch OMT UML
Englewood Cliffs, NJ: Prentice-Hall, 1997.



Access Layer: Object
Storage and Object
Interoperability

Chapter Objectives

You should be able to define and understand

+ Object storage and persistence,

+ Darabase managemen! systems and their technology.
* Client-server computing.

+ Distributed databises.

+ Distributed ohject computing.

* Object-oriented database management systems.

+ Object-relational systems.

+ Designing socess layer objects.

11.1 INTRODUCTION

A database management system (DBMS) is a set of programs that enables the cre-
ation and maintenance of a collection of related data. A DBMS and associated pro-
grams access, manipulate, protect, and manage the data. The fundamental purpose
of a DBMS is to provide a reliable, persistent data storage facility and the mech-
amisms for efficient, convenient data access and retrieval. A database is supposed
to represent a real-world situation as completely and accurately as possible. The
data model incorporated mto a database system defines a framework of concepis
that can be used to express an application [5].

Persistence refers 1o the ability of some objects to outlive the programs that cre-
ated them. Object lifetimes can be short, as for local objects (these objects are tran-
sient), or long, as for objects stored indefinitely in a database (these objects are
persistent). Most object-oriented languages do not support serialization or object

237



23B FRT FOUR: OBJECT-ORIENTED DESIGN

=g

i

persistence, which is the process of writing or reading an object to and from a per-
sistent storage medium, such as a disk file. Even though a reliable, persistent stor-
age facility is the most important aspect of a database, there are many other aspects
as well, Persistent object stores do not support query or interactive user interface
facilities, as found in fully supported object-oriented database management sys-
tems. Furthermore, controlling concurrent access by users, providing ad-hoc query
capability, and allowing independent control over the physical location of data are
examples of features that differentiate a full database from simply a persistent
store, This chapter introduces you to the issues regarding object storage, relational
and object-oriented database management systems, object interoperability, and
other technologies. We then look at current trends to combine object and refational
systeéms 1o provide a very practical solution to object storage. We conclude the
chapter with a discussion on how to design the access layer objects.

11.2 OBJECT STORE AND PERSISTENCE: AN OVERVIEW

A program will create a large amount of data throughout its execution. Each item
of data will have a different lifetime. Atkinson et al. [1] describe six broad cate-
gories for the lifetime of data:

1. Transient results 1o the evaluation of expressions.

| 2. Variables involved in procedure activation (parameters and variables with a lo-

\ A

calized scope).
. 3. Global variableés and variables that are dynamically allocated.
4. Data that exist between the executions of a program.
5. Data that exist between the versions of a program.

6. Darta that outlive a program,

The first three categories are fransient data, data that cease to exist beyond the
lifstime of the creating process. The other three are nontransient, or persistent,
data.

Typically, programming languages provide excellent, integrated support for the

first three categories of transient data, The other three categories can be supported
by a DBMS, or a file system.

The same issues also apply to objects; afier all, objects have a lifetime, 100.
They are created explicitly and can exist for a period of time (during the applica-
tion session). However, an object can persist beyond application session bound-
aries, during which the object is stored in a file or a database. A file or a database
can provide a longer life for objects—longer than the duration of the process in
which they were creatéd. From a language perspective, this characteristic is called
persistence. Essential elements in providing a persistent store are [4]:

« Identification of persistent objects or reachability (object ID).

» Properties of objects and their intérconnections. The store must be able to co-
herently manage nonpointér and pointer data (i.e., interobject references).

+ Scale of the object store. The object store should provide a conceptually infinite
store.




CHAFTER 11: ACOESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 239

* Stability. The system should be able to recover from unexpected failures and re-
turn the system to a recent self-consistent state, This is similar to the reliability
requirements of a DBMS, object-oriented or not,

Having separate methods of manipulating the data presents many problems.
Atkinson et al. [1] claim that typical programs devote significant amounts of code
to transferring data to and from the file system or DBMS. Additionally, the use of
these external storage mechanisms leads to a variety of technical issues, which will
be examined in the following sections.

11.3 DATABASE MANAGEMENT SYSTEMS

Databases usoally are large bodies of data seen as critical resources 10 a company.
As mentioned earlier, a DBMS is a sét of programs that enable the creation and
maintenance of a coflection of related data. DBMSs have a number of properties
that distinguish them from the file-based data management approach. In traditional
file processing, each application defines and implements the files it requires. Ls-
ing a database approach, a single repository of data is maintained. which can be
defined once and subsequently accessed by various users (see Figure 11-1).

A fundamental characteristic of the database approach is that the DBMS con-
tins not only the data but a complete definition of the data formats it manages.
This description is known as the schema, or metg-data, and contains a complete
definition of the data formats, such as the data structures, types, and constraints.

In traditional file processing applications, such meta-data usually are encapsu-
fated in the application programs themselves, In DBMS, the format of the meta-
data is indepéndent of any particular application data structure:-therefore, it will

FIGURE 11-1
Database systern vs, lile sysiam.

Marketing
Sales
: Accounty
Engingening DEMS Emigloyes
Invenidry
A Customer
COOUNINE Darts

[nnbase System

Engineering : Pirts I

Marketing [ I frvenitony I
Accoanting I I Acéoubite I

File System




240 euaT FOUR: OBJECT-ORIENTED DESIGN

provide a generic storage management mechanism. Another advantage of the data-
base approach is program-data independence. By moving the meta-data into an ex-
ternal DBMS, a ldyer of insulation is created between the applications and the
stored data structures. This allows any number of applications to access the data
in a simplified and uniform manner.

11.3.1 Database Views

The DBMS provides the database users with a concepiual representation that is in-
dependent of the low-level details (physical view) of how the data are stored. The
database can provide an abstract data model that uses logical concepts such as
field, records, and tables and their interrelationships. Such a model is understood
more easily by the user than the low-level storage concepts.

This abstract data model also can facilitate multple views of the same under-
lying data. Many applications will use the same shared information but each will
be interested in only a subset of the data. The DBMS can provide multiple virtual
views of the data that are tailored to individual applications. This allows the con-
venience of a private data representation with the advantage of globally managed
informarion.

11.3.2 Database Models

A ditabase model is a collection of logical constructs used to represent the data
structure and data relationships within the database. Basically, database models
may be grouped into two catégories: mnmmen models.
The conceptual model focuses on the logical nature of that data presentation.
Therefore, the conceptual model is concerned with what is represented in the data-
hase and the implementation model is concerned with how it is represented [12].

11.3.2.1 Hierarchical Model The hierarchical model represents data as a single-
rooted tree. Each node in the tree represents a data object and the connections rep-
resent a parent-child relationship. For example, a node might be a record contan-
ing information about Motor vehicle and its child nodes could contain a record
about Bus parts (see Figure 11-2). Interestingly enough, a hierarchical model re-
sembles super-sub relationship of objects.

FIGURE 11-2

A hierarchical model. The top layer, the rool, is perceived as the parent of the segmant directly
below It In this case motor vehicle is the parent of Bus, Truck, and Car. A segment alsa s
called a node. The segments below another node are the children of ths node above them,
Bus, Truck, and Car are tha children of Motor Vehicle.

Motor Vehicle

R R R RO RRRRROBEEBRD




CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 241

s

Order

FIGURE 11-3
Network model. An Order contalns data from both Customer and Soup.

11.3.2.2 Network Model A network database model is similar 1o a hierarchical
database, with one distinction. Unlike the hierarchical model, a network model’s
record can have more than one parent. For example, in Figure 11-3, an Order con-
tains data from the Soup and Customer nodes.

11.3.2.3 Relational Model Of all the database models, the relational model has
the simplest, most uniform structure and is the most commercially widespread.
The primary concept in this database model is the relation, which can be thought
of gs a table. The columns of each table are attributes that define the data or value
domain for entries in that column. The rows of each table are tuples representing
ndividual data objects being stored. A relational table should have only one pri-
mary key. A primary key is a combination of one or more attributes whose value
unambiguously locates each row in the table. In Figure 11-4, Soup-1D, Cusi-ID,
and Order-ID are primary keys in Soup, Customer. and Order tables. A foreign
key is a primary key of one table that is embedded in another table to link the ta-
bles. In Figure 11-4, Soup-ID and Cust-ID are foreign keys in the Order table,

FIGURE 11-4

The figure depicts primary and foreign keys in a relation database, Soup-ID is a primary key of
e Soup table, Cust-ID is & primary key of the Customer table, and Order-ID is a primary key of
the Ordar table. Soup-1D and Cust-ID are foreign keys in the Ordar tabila.

Soup Table Costomer Table
Key Key
Soup-I | Soup Mame Price —P Cust-ID | Name | Address | Phone 8

Fareign
Order Table Keys v

Key  JOrder-IDY Soup-ID | Cuse-lD | OTY




242 PART FOUR: OBJECT-ORIENTED DESIGN

11.3.3 Database Interface

The interface on a database must include a data definition language (DDL), a
query, and data manipulation language (DML). These languages must be designed
to fully reflect the flexibility and constraints inherent in the data model. Database
systems have adopted two approaches for interfaces with the system. One is to
embed a database language, such as structured query language (SQL), in the host
programming language. This approach is a very popular way of defining and de-
signing a database and its schema, especially with the popularity of languages
such as SQL, which has become an industry standard for defining databases. The
problem with this approach is that application programmers have to leam and use
two different languages. Furthermore, the application programmers have to nego-
tiate the differences in the data models and data structures allowed in both lan-
guages [R].

Another approach is to extend the host programming language with database-
related constructs. This is the major approach, since application progrummers need
to learn only a new construct of the same language rather than a completely new
language. Many of the currently operational databases and object-oriented data-
base systems have adopted this approach; a good example is GemStone from
Servio Logic, which has extended the Smalltalk object-oriented programming.

11.3.3.1 Database Schema and Data Definition Language To represent infor-
mation in a database, a mechanism musi exist to describe or specify to the data-
base the entities of interest. A data definition language (DDL) is the language
used to describe the structure of and relationships between objects stored in a data-
base. This structure of information is termed the database schema. In traditional
databases, the schema of a database is the collection of record Types and set types
or the collection of relationships, templates, and table records used to store infor-
mation about entities of interest to the application.

For example, to create logical structure or schema, the following SQL command
can be used:

CHEATE SCHEMA AUTHORIZATION (creator)
CREATE DATABASE (database nams)

For example,

CREARTE TABLE INVENTORY (Inventory_WNumber CHAR(10)NOT WULL
DESCRIPTION CHAR(25) NOT HULL FRICE DECIMAL (%, 2)):

where the boldface words are SQL keywords,

11.3.3.2 Data Manipulation Language and Query Capabilities Any time data
are collected on virtually any topic, someone will want to ask questions about it.
Someone will want the answers to simple questions like “How many of them are
there?" or mare intricate questions like “What is the percentage of people between
ages 21 and 45 who have been employed for five years and like playing tennis?”

Asking questions—more formally, making queries of the data—is a typical and
common use of a database, A query usually is expressed through a query language,
A datae manipulation language (DML) is the language thal allows users to access




CHAPTER 11! ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 243

and manipulate (such as, create, save, or destroy) data organization. The structured
gquery language (SQL) is the standard DML for relational DBMSs. SQL is widely
used for its query capabilities. The guery usually specifies

* The domain of the discourse over which to ask the query.

* The elements of peneral interest,

* The conditions or constraints that apply.

* The ordering. sorting, or grouping of elements and the constraints that apply to
the ordering or grouping,

Query processes generally have sophisticated “engines” that determine the best
way to approach the database and execute the query over jt. They may use infor-
mation in the database or knowledge of the whereabouts of particular data in the
network to optimize the retrieval of a query,

Traditionally, DML are either procedural or nonprocedural. A procedural DML
requires users Lo specify what data are desired and how (o get the data. A nonpro-
cedural DML, like most databases’ fourth generation programming language
i4GLs), requires users to specify what data are needed but not how to get the data,
Object-oriented query and data manipulation languages. such as Object SQL, pro-
vide object management capabilities to the data manipulation language.

In a relational DBMS, the DML is independent of the host programming lan-
guage. A host language such as C or COBOL would be used to write the body of
the application. Typically, SQL statements then are embedded in C or COBOL ap-
plications to manipulate data. Once SQL is used to request and retrieve database
data, the results of the SQL retrieval must be transformed into the data structures
of the programming language. A disadvantage of this approach is that program-
mers code in two languages, SQL and the host language. Another is that the strue-
iural ransformation is required in both database access directions, to and from the
database.

For example, 1o check the table content, the SELECT command is used, followed
by the desired attributes. Or, if you want to see all the attributes listed, use the (*)
o indicate all the attributes; SELECT DESCRIPTION, PRICE FROM INVENTORY;
where inventory is the name of a table.

11.4 LOGICAL AND PHYSICAL DATABASE ORGANIZATION AND
ACCESS CONTROL

Logical database organization refers to the concepiual view of database structure
and the relationships within the database. For example, object-oriented systems
represent databases composed of objects, and many allow multiple databases to
share information by defining the same object, Physical database organization
refers to how the logical components of the database are represented in a physical
form by operating system constructs (i.e., objects may be represented as files).

11.4.1 Shareability and Transactions

Data and objects in the database often need to be accessed and shared by differ-
ent applications. With multiple applications having access o the object concur-
rently; it is likely that conflicts over object access will arise. The database then



244 pPaRT FOUR: OBJECT-ORIENTED DESIGN

must detect and mediate these conflicts and promote the greatest amount of sharing
possible without sacrificing the integrity of data. This mediation process is man-
aged through concurrency control policies. implemented, in part, by transactions.

A fransaction is a unit of change in which many individual modifications are
aggregated into-a single modification that occurs in its-entirety or not at all. Thus.
either all changes to objects within a given transaction are applied to the database
or none of the changes. A transaction is said to commit if all changes can be made
successfully to the database and to abort if canceled because all changes to the
database cannot be made successfully, This ability of transactions ensures atomi-
city of change that maintain the database in a consistent state.

Many transaction systems are designed primarily for short transactions (lasting
on the order of seconds or minutes). They are less suitable for long transactions,
lasting hours or longer. Object databases typically are designed to suppornt both
short and long transactions. A concurrénce control pohey dictates what happens
when conflicts arise between transactions that attempt access to the same object
and how these conflicts are to be resolved.

11.4.2 Concurrency Policy

As you might expect, when several users (or applications) attempt to read and
write the same object simultaneously, they create a contention for object. The con-
currency control mechanism is established 1o mediate such conflicts by making
policies that dictate how they will be handled.

A hasic goal of the transaction is to provide each user with a consistent view of
the database. This means that transactions must occur in serial order. In other
words, a given user must see the database as it exists either before a given trans-
gction occurs or after that transaction,

The most consérvative way to enforce serialization is to-allow a user to lock all
objects or records when they are accessed and to release the locks only after a
transaction commits. This approach, traditionally known as a conservative or pes-
simistic Eﬂ!lﬂ' provides exclusive access to the object, despite what is done 10 it.
The policy is very conservative because no other user can view the data until the
object is released. However, by distinguishing betwein querying (reading or get-
ting data from) the object and writing to it (which is achieved by qualifying the
type of lock placed in the object-read lock or -write lock), somewhal greater con-
currency can be achieved, This policy allows many readers of an object bot only
ong writer.,

Under an optimistic policy, two conflicting transactions are compared in their
entirety and then their serial ordering is determined. As long as the database is able
to serialize them so that all the objects viewed by each transaction are from a con-
sistent state of the database; both can continue even though they have read and
write locks on a shared object. Thus, a process can be allowed to obtain a read
lock on-an object already write locked if its entire transaction can be senalized as
if it occurred either entirely before or entirely after the conflicting transaction. The
reverse also is true: A process may be allowed to obtain a write lock on an object
that has a read lock if its entire transaction can be serialized as if it occurred after
the conflicting transaction. In such cases, the optimistic policy -allows more
processes 1o operate concurrently than the conservative policy.



CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 245

11.5 DISTRIBUTED DATABASES AND CLIENT-SERVER COMPUTING

Many modern databases are distributed databases, which implies that portions of
the database reside on different nodes (computers) and disk drives in the network.
Usually, each portion of the database is managed by a server, a process responsi-
hle for controlling access and retrieval of data from the database portion. The
server dispenses information to client applications and makes queries or data re-
quests to these client applications or other servers. Clients generally reside on
nodes in the network other than those on which the servers execute: However, both
can reside on the same node, too.

11.5.1 What I= Client-Server Computing?

Client-server computing is the logical extension of modular programming. The
fundamental assumption of modular programming is that separation of a large
piece of software into its constituent parts (“modules™) creates the pessibility for
zasier development and better maintainability.

Client-server computing extends this theory a step further by recognizing that
21l those modules need not be executed within the same memory space Of even on
the same machine. With this architecture, the calling module becomes the “client”
(that which requests a service) and the called module becomes the “server” (that
which provides the service; see Figure 11-5). Another important component of
client-server computing is connectivity, which allows applications 1o communicate
rransparently with other programs or processes, regardless of their locations. The
key element of connectivity is the network operating system (NOS), also known
as middleware. The NOS provides services such as routing, distribution, messages,
filing and printing, and network management [6].

The client is a process (program) that sends a message 1o a server process (pro-
gram) requesting that the server perform a task (service), Client programs usually
manage the user interface portion of the application, validate data mwma by the
user, dispatch requests to server programs, and sometimes execute business logic.
The business layer contains all the objects that represent the business (real objects),

FIGURE 11-5
Twoe-tiar client-sarver system.

i Application strver

LAN or WAN

Client Client Chent



2486 PART FOUR:; OBIECT-ORIENTED DESIGN

such as Order, Custumer. Lineitem, Inventory. The client-based process is the

face {GLH] which nunnally is a part of the operating system (ie., . the Windows
manager). It is responsible for detecting user actions, managing the Windows on
the display, and displaying the data in the Windows.

A server process (program) fulfills the client request by performing the task re-
quested, “Server programs generally receive requests from client programs, execute
database retrieval and updates, manage data integrity, and dispatch responses to
client requests. Sometimes, SETVer PrOgrams execute common or complex business
logic. The server-based process “may” run on another machine on |J1: network.
then is provided both filé system services and application services. Tn some cases,
another desktop machine provides the application services. The server process acts
as a software engme that manag-:ts shared resources such as databases, pnntl:rs

e e [l et o

the back-end tasks that aré common to similar apphcannns

The server can take different forms. The simplest form of server is a file server.
With a file server, the client passes requests for files or file records over a network
to the file server. This form of data service requires large bandwidth (the range of
data that can be semt over a given medium simultaneously) and can considerably
slow down a network with many users. Traditional LAN computing allows users
to share resources, such as data files and peripheral devices [6].

Mure advanced forms of servers are database servers, transaction servers, ap-

" pass SQL requegls as messages to the wWEr and the results of the qunry are re-
turned over the network. Both the code that processes the SQL request and the data
reside on the server, allowing it to use its own processing power to find the re-
guested data. This is in contrast to the file server, which requires passing all the
records back to the client and then letting the client find its own data.

With transaction servers, clients invoke remote procedures that reside on servers,
which also contain an SQL database engine. The server has procedural statements
to execute a group of SQL statements (transactions), which either all succeed or
fail 4s & unit.

The applications based on transaction servers, handled by on-line transaction
processing (OLTP), tend to be mission-critical applications that always require a
1-3 second response time and tight control over the security and the integrity of
the database. The communication overhead in this approach is kept to a minimum,
since the exchange typically consists of a single request and reply (as opposed o
multiple SOL statements in database servers).

Application servers are nol necessarily database centered but are used lo serve
user needs, such as downloading capabilities from Dow Jones or regulaling an
electronic mail process. Basing resources on a server allows users to share data,
while security and management services, also based on the server, ensure data in-



CHAFTER 11 ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 247

DBMS: server or
Legacy data ind
application

Application. or
Web server

[

Client Clieni Clignt
FIGURE 11-8
Threa-tierad architecturs.

tegrity and security [6]. The logical extension of this is to have clients and servers
running on the appropriate hardware and software platforms for their functions.
For example, database management system servers should run on platforms spe-
cially designed and configured to perform queries, and file servers should run on
platforms with special elements for managing files.

Ina rwo-tier architecture, a client talks directly to a server, with no intervening
server, This type of architecture typically is used in small environments with less
than 50" users (see Figure 11-3). A common error in client-server development is
10 prepare a prototype of an application in a small, two-tier environment then scale
ap by simply adding more users to the server. This approach usually will result in
an ineffective system, as the server becomes overwhelmed. To properly scale up
t0 hundreds or thousands of users. it usually is necessary to move to a three-tier
architecture [14].

A three-tier architecture introduces a server (application or Web server) be-
tween the client and the server. The role of the application or Web server is man-
ifold. It can provide translation services (as in adapting a legacy applxcaunn on a
mainframe to a client-server environment), metering services (as in acting as a
ransaction monitor to limit the number of simultancous requests to a given server),
or intelligent agent services (as in mapping a request (0 a number of different
servers, collating the results, and returning a single response to the client) [14] (see
Figure 11-6),

Ravi Kalakota describes the basic characteristics of client-server architectures
as follows [6]:

I. A combination of a cliént or front-énd portion that intericts with the userand o server
or backend portion that interacts with the shared resource. The chient process con-
tains solution-specific logic and provides the interface between the user and the rest

Please note thot this number depends on many other factors, such as number of transactions per sec-
ond, a8 well as the size of the server, the: capacity of the network, and so forth.



248 eaaT FOUR: OBJECT-ORIENTED DESIGN

of the application system. The server process acts as a sofiware engine that manages
shared resources such as databases, printers, modems, or high-powered processors.

2. The front-end task and back-end task have - fundamentally different rnqum:r_mn_’is for
computing resources such as processor speeds, memory, disk speeds and capacities,
and input/outputl devices.

3. The environment is typically heterogeneous and multivendor. The hardware platform
and operating system of client and server are not usually the same. . Clignt and server
processes communicate through a well-defined set of standard application program
interfaces (APIs) .

4. An important charactéristic of clieni-server systems is scalability, They can be scaled
herizontally or vertically, Horizontal scaling means adding or removing client work-
stations with only a slight performance impact. Vertical | scaling means migrating 1o
a larger and faster server maching or multiservers,

Client-server and distributed computing have arisen because of a change in busi-
ness needs, Unfortunately, most businesses have existing systems, based on older
technology, that must be incorporated into the new, integrated environment; that
is, mainframes with a great deal of legacy (older application) software.

Robertson-Dunn [13] answers the question “why build client-server applica-
tions? by pointing out that “business demands the increased benefits.” The dis-
tinguishing charactenstic of a client-server application is the high degree of inter-
action among various application components [3], These are the interactions
between the client's requests and the server's reactions (o those requests. To un-
derstand these interactions, we look at the chent-server application's components.
A typical client-server application consists of the following components:

1. User interface. This major component of the client-server application interacts
with users, screens, Windows, Windows management, keyboard, and mouse
handling.

2. Business processing. This part of the application uses the user interface data to
perform business tasks. In this book, we look at how to develop this component
by utilizing an object-oriented technology.

3. Database processing.This part of the application code manipulates data within
the apphication. The data are managed by a database management system, object
onented or not. Data manipulation 1s done using a data manipulation language,
such as SQL or a dialect of SQL (perhaps, an object-oriented query language).
Ideally, the DBMS processing 15 transparent to the business processing layer of
the application.

The development and implementation of client-server computing 15 more com-
plex, more difficult. and more expensive than traditional, single process applica-
tions. However, ntilizing an object-oriented methodology, we can manage the com-
plexity of client-server applications.

11.5.2 Distributed and Cooperative Processing
The distributed pms:ng means distnbution of apph{:ahuns and business logic

across multiple processing platf:.‘:nns Distributed processing imphes that process-
ing will eccur on more than one pl‘D-l'.‘tSﬁCH‘ in order for a transaction to be com-




CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBIECT INTEROPERABILITY 249

Applicanon Apphcation
fragment 2 fragment |
Server 2 é Server | gl
Client Chigi Chient
FIGURE 11-7
Distributed processing.

pleted. In other words, processing is distributed ‘across two or more machines,
where each process performs part of an application in a sequence. These processes
may not run at the same time (see Figure 11-7). For example, in processing an
order from a client, the client information may process 2t one machine and the
account information then may process on a different machine. Often, the object
used in a distributed processing environment also is distributed across piat-
forms [6].

Cooperative processing is computing thal requires two or more distinet L proces-
sors to complete a single transaction. Coopcrauw: prm:essmg is related to both dis-

wributed and client-server processing. Cooperative processing is a form of distrib-
uted computing in which two or more distinct processes are required to complete

a single business transaction. Usually, these programs intersct and execute con-
currently on different processors (see Figure 11-8). Cooperative processing also
can be considered to be a style of distributed processing, if communication be-
rween processors is performed through a message-passing architecture [6],

FIGURE 11-8
Cooperalive processing,

[

I Cooperative processing

Applicitions, % P Applications:
Windows 93 Windenws
ACCESS ACCESS

Lostus: Ltues



250 raRT FOUR: OBJECT-ORIENTED DESIGN

11.6 DISTRIBUTED OBJECTS COMPUTING: THE NEXT
GENERATION OF CLIENT-SERVER COMPUTING

In the preceding section, we looked at what is now considered the first generation
of client-server computing. Eventually, the server code in your client-server sys-
tem will give way to collections of distributed objects. Since all of them will need
to talk to each other, the second generation of client-server computing is based on
distributed object computing, which will be covered in the next section,

Software technology is in the midst of a major computational shift toward dis-
tributed object computing (DOC). Distributed computing 15 poised for a second
client-server revolution, a transition from first generation client-server era to a next
generation client-server era. In this new client-server model, servers are plentiful
instead of scarce (because every client can be a server) and proximity no longer
matters. This immensely expanded client-server model is made possible by the re-
cent exponential network growth and the progress in network-aware multithreaded
desktop operating systems.

In the first generation client-server era, which still is very much in progress,
SQL darabases. transaction processing (TP) monitors, and groupware have begun
to displace file servers as client-server application models. In the new client-server
era, distributed object technology is expected to dominate other client-server ap-
plication models.

Distributed object computing promises the most flexible client-server systems,
because it utilizes reusable software components that can roam anywhere on net-
works, run on différent praiforms, communicaie with legacy applications by means
of object wrappers,” and manage themselves and the resources they control. Ob-
jects can help break monelithic applications into more manageable components
that coexist on the expanded bus.

Distributed objects are reusable software components that can be distributed
and accessed by users across the network. These objects can be assembled into dis-
tributed applications [9], Distributed object computing introduces a higher level of
abstraction into the world of distributed applications. Applications no lenger con-
sist of clients and servers but users, objects. and methods. The user no longer needs
to know which server process performs a given function, All information about the
function is hidden inside the encapsulated object. A message requesling an operi-
tion is sent to the object, and the appropriate method is invoked.

Distributed object computing will be the key part of tomorrow’s information
systems. DOC resulied from the need to integrate mission-critical applications and
data residing on systems that are geographically remote, sometimes from users and
often from each other, and running on many different hardware platforms. Fur-
thermore, the information systems must link applications developed in different
languages, use data from object and relational databases and from mainframe sys-
tems, and be optimized for use across the Internet and through deparimental in-
tranets. Historically. businesses have had to integrate applications and data by
writing custom interfaces between systems, forcing developers to spend their time

* Concepruaily, an object wrapper is very similar 1o un access layer, discussed tater i this chapier.



CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 251

building and maintaining an infrastructure rather than adding new business
functionality,

Distributed object technology has been tied to standards from the early stage.
Since 1989, the Object Management Group (OMG), with over 500 member com-
panies, has been specifying the architecture for an open software bus an which ob-
fect components written by different vendors can operate across networks and op-
erating systems. The OMG and the object bus are well on their way to becoming
the universal client-server middleware,

Currently, there are several competing DOC standards, including the Object
Management Group’s CORBA, OpenDoc, and Microsoft's ActiveX/DCOM. Al-
though DOC technology offers unprecedented computing power, few organiza-
uons have been able to hamess it as yet. The main reasons commonly cited for
slow adoption of DOC include closed legacy architecture, incompatible protocols,
madequate network bandwidths, and security issues, In the next subsections, we
ook at Microsoft's DCOM and OMG's CORBA.

11.6.1 Common Object Request Broker Architecture

Many organizations are now adopting the Object Management Group's common
object request broker architecture (CORBA), a standard proposed as a means to
miegrate distributed, heterogeneous business applications and data. The
imierface definition language (IDL) allows developers to specify language-neutral,
object-oriented interfaces for application and system components. IDL definitions
zre stored in an interface repository, a sort of phone book that offers object inter-
faces and services. For distributed enterprise computing, the interface repository is
central to communication among objects located on different systems.

CORBA object request brokers (ORBs) implement a communication channel
through which applications can access object interfaces and request data and services
{see Figure 11-9). The CORBA common object environment (COE) provides system-

FIGURE 11-%9
Tha Commin Object Reques! Broker Architecture (CORBA),

Applicstion chjects Domnann objects
SV R

ker ((ORE)

Narmng_ & Concurmency

Persistence Events Transaction

CXinject request bin




252 PART FOUR: OBJECT-ORIENTED DESIGN

level services such as life cycle management for objects accessed through CORBA,
event notification between objects, and transaction and concurrency control,

11.6.2 Microsoft's ActiveX/DCOM

Microsofi’s component object mode] (COM) and its successor the distributed com-
ponent object model (DCOM) are Microsoft’s altemmatives to OMG’s distributed
ohject architecture CORBA. Microsoft and the OMG are competitors, and few can
say for sure which technology will win the challenge. Although CORBA benefits
from wide industry support, DCOM is supporied mostly by one enterprise, Mi-
crosoft,. However, Microsoft is no small business concern and holds firmly a huge
part of the microcomputer population, so DCOM has appeared 4 very serious com-
petitor to CORBA, DCOM was bundled with Windows NT 4.0 and there 15 a good
chanie 10 see DCOM in all forthcoming Microsoft products,

The distributed component object model, Microsoft's alternative to OMG's
CORBA, is an Internet and component strategy where ActiveX (formerly known
as object linking and embedding. or OLE) plays the role of DCOM object. DCOM
also is backed by a very efficient Web browser, the Microsoft Internet Explorer.

11.7 OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS:
THE PURE WORLD

Database management systems have progressed from indexed files 1o network and
hierarchical database systems to relational systems. The requirements of traditional
business data processing applications are well met in functionality and perfor-
mance by relational database systems focused on the needs of business data pro-
cessing applications. However, as many researchers observed, they are inadequate
for a broader class of applications with unconventional and complex data type re-
guirements. These requirements along with the popularity of ohject-onented pro-
gramming have resulted in great demand foran object-oriented DBMS (OODEMS).
Therefore, the interest in OODBEMS initially stemmed from the data storage re-
quirements of design support applications (e.g., CAD, CASE, office information
systems).

The object-oriented database management system is a marriage of object-
oriented programming and database technology (see Figure |1-10) to provide
what we now call ebjecr-orienied darabases. Addivonally, object-onented data-
bases allow all the benefits of an object orientation as well as the ability to have a
strong equivalence with object-oriented programs, an equivalence that would be lost
if an-alternative were chosen, as with a purely relational database. By combining
object-oriented programming with database technology, we have an integrated ap-
pheation development system, a significant charactenistic of object-oriented data-
base technology. Many advantages aecrue from including the definition of operations
with the definition of data. First, the defined operations apply universally and are not
dependent on the particular ditabase application running at the moment. Second, the
data types can be extended to support complex data such as multimedia by defining
new object classes that have operations to support the new kinds of information,



CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 253

Ohject-oriented programming

Database capabilitics

FIGURE 11-10
The object-oriented database managemen! system is a marriage of object-orented program-
ming and database technalogy.

The “Object-Oriented Database System Manifesto” by Malcom Atkinson et al.
[2] described the necessary charactenistics that a system must satisfy to be con-
sidered an object-oriented database. These categories can be broadly divided into
object-oriented language properties and darabase requirements,

First, the rules that make it an object-oriented system are as follows:

1. The svstem must support complex objects. A system must provide simple
atomic types of objects (imegers, characters. etc.) from which complex objects
can be built by applying constructors to atomic objects or other complex
obiects or both.

2. Object identity must be supported. A data object must have an identity and ex-
istence independent of its values,

3. Objects must be encapsulared. An object must-encapsulare both a program and
its data. Encapsulation embodies the separation of interface and implementa-
tion and the need for modularity.

4. The system must support rypes or classes. The system must suppost either the
type concept (embodied by C+ + ) or the class concept (embodied by Smalltalk).

5. The sysrem must support inheritance. Classes and types can participate in a
class hierarchy. The primary advantage of inheritance is that it factors out
shared code and interfaces.




254 PaRT FOUR: OBJECT-ORIENTED DESKGN

6. The system must avoid premarure binding. This feature also is known as lare
binding or dvinamic binding (see Chapter 2, which shows that the same method
name can be used in different classes). Since classes and types support en-
capsulation and inheritance; the system must resolve conflicts in operation
DAMES at run wme.

7. The svstem must be compurationally complete. Any computable function
should be expressible in the data manipulation language (DML) of the system,
thereby allowing expression of any type of operation.

8. The system miust be extensible. The user of the system should be able to cre-
aie new types that have equal stanis to the system’s predefined types.

These requirements are met by most modern object-oriented programming lan-
guages such as Smalltalk and C+ +. Also, clearly, these requirements are not mel
directly (more on this in the next section) by traditional relational, hierarchical, or
network database systems.

Second, these rules make it a DEMS:

9. It must be persistent, able to remember an object state. The system must
allow the programmer to have data survive beyond the execution of the creat-
ing process for it to be reused in another process.

10, It must be able to manage very large databases. The system must efficiently
manage access 10 the secondary storage and provide performance features,
such as indexing, clustering, buffering, and guery optimization.

11. It must accept concurrent users. The system must allow multiple concurrent
users and support the notions of atomic, serializable transactions.

12. It must be able to recover from hardware and software failures. The system
must be able to recover from software and hardware failures and retum to a
coherent state.

13. Dara query must be simple. The system must provide some high-level mech-
anism for ad-hoc browsing of the contents of the database. A graphical browser
might fulfill this requirement sufficiently.

These database requirements are met by the majority of existing database sys-
tems, From these two sets of definitions it can be argued that an OODBMS is a
DBMS with an underlying object-oriented model,

11.7.1 Object-Oriented Databases versus Traditional Databases
The scope of the responsibility of an OODBMS includes definition of the object
structures, object mampulation, and recovery, which is the ability to maintain data
integrity regardless of system, network, or media failure, Furthermore, OODBMSs
like DBMSs must allow for shanng; secure, concurrent multiuser access; and ef-
ficient, reliable system performance.

One obvious difference between the traditional and object-oriented databases 1s
derived from the W@Mﬁwﬁm objects and with itself. The
objects are an “active” component in an object-oriented database, in contrast 1o
conventional database systems, where records play a passive role. Yet another dis-
tinguishing feature of object-oriented database is inheritance. Relational database



CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 255

systems do not explicitly provide inheritance of attributes and methods. Object-
ariented databases, on the other hand, represent relationships explicitly, suppon-
ing both navigational and associative access to information. As the complexity of
interrelationships between information within the database increases, so do the ad-
vantages of representing relationships explicitly. Another benefit of using explicit
relationships is the improvement in data access performance over relational value-
based relationships.

Object-oriented databases also differ from the more traditional relational data-
bases in that they allow representation and storage of data in the form of objects. Each
abject has its own identity, or objeci-ID (as opposed to the purely value-oriented
approach of traditional databases). The object identity is independent of the state of
the object. For example, if one has a car object and we remodel the car and change
its appearance, the engine, the transmission, and the tires so that it looks entirely
different, it would sill be recognized as the same object we had originally. Within
an object-onented database, one always can ask whether this is the same object |
had previously, assuming one remembers the object’s identity. Object identity allows
objects to be related as well as shared within a distributed computing network.

All these advantages point to the application of object-oriented databases o in-
formation management problems that are characterized by the need to manage

* A large number of different data types.
* A large number of relationships between the objects.
* Objects with complex behaviors,

Application areas where this kind of complexity exists include engineering,
manufacturing, simulations, office automation, and large information systems
(“No More Fishing for Data” is a real-world example of this),

11.8 OBJECT-RELATIONAL SYSTEMS: THE PRACTICAL WORLD

in practice, even though many applications increasingly are developed in an object-
onented programming technology, chances are good that the data those applications
need to access live in a very different universe—a relational database. In such an
environment, the introduction of object-oriented development creates a fundamen-
tal mismatch between the programming model (objects) and the way in which ex-
isting data are stored (relational tables) [9].

To resolve the mismatch. a mapping tool between the application objects and
the relational data must be established. Creating an object model from an existing
relational database layout (schema) often is referred to as reverse engineering.
Conversely. creating a relational schema from an existing object model often is
referred to as forward engineering. In practice, over the life cycle of an applica-
tion, forward and reverse engineering need to be combined in an iterative process
1o maintain the relationship berween the object and relational data representations.

Tools that can be used to establish the object-relational mapping processes have
begun to emerge. The main process in relational and object integration is defining
the relationships between the table structures (represented as schemata) in the re-
lational database with classes (representing classes) in the object model. Eun’s Java




286 ©£uaT FOUR: ORIECT-ORIENTED DESIGN

. R A
I-lliL1Z'.' Jari

NO MORE FISHING FOR DATA

= B A & % 4
YR T s Beomids
|‘:_~w'." I:r On 1 KAOE |-||_!

Client/Server: With the help of a three-tier deci-
sion support system, a Canadian department
balts saimon spawning

Esther Shein

Tracking the spawning habits of salman using high
technology may sound like fishy business, but it's
mora important than you'd think—especially when
you're up against the whims of Mother MNature.

The huge amount of data that needed o be
tracked was daunting, according 1o lan Williams, a
senior biologist and head of the Fresh Water Habi-
tatz Science Group for the Department of Fisheries
(DHDF), in Manaimo, British Columbia. To make mal-
ters warse, differant groups within the DFO had
been creating independent databases focusing on
their area of interest. It was lime for some serlous
streamlining.

THREE-TIER TO RESCUE

The consolidation came in the form of the decision
support system, dubbed The Integrated Frasar
Salmon medel, which was built using Facet Deci-
sion Systems Inc's developmean! emvironment,
Facel's tool comprises middiewara for links to thind-
party databases; an object-orignted spreadsheet-
like development environment; and 3-0 visualization
tools. Facet's object-orlentad capabilities and ca-
pacity to accommodate ever-changing business
rules make it applicabla for any industry—for ex-
ampla, finance—that naeds 1o construct and ana-
Iyze large dala models. _

The Fraser Salmon modal was buill in threa lay-
ers: one for data access, one for data integration
and one to parlay the biclogist's rules which pro-
duces the technical results. DFO officials wantad all

the miscallaneous databases linked so employees
wiould have access lo the same Information—for ek-
ample, the number of fish caught in oceans and
rivers over & particular peried, the estimated space
still available for spawning and where forest fires oc-
cur. The top layar ol the system contains policy
analysis, which are togls to create and compars
scenarios “lo see technical impacts and transiale
them into the information: you need to make deci-
sions,” explains Scott Akenhead, vice president of
Business Development al Facal,

The model, which Akenhead iikens 1o a spread-
sheet, has ceills that are object-oriented in natirs, in
the form of graphics, maps or the links o the Ora-
cle data and rules written by a biclogisl.

The model difters from the typical data ware-
house, because of the use of advanced object-
oriented technology, which allows Facet to bulld a
much larger model. “We didn’t just assemble fthe
data and drop i in their laps. The data was analyzed
by the Facet system using rules-the biclogist pro-
vided” he explains.

“We found a way 1o make new object-criented
tachnology available to peopie who are not pro-
grammers,” Akenhead says,

Today, using map as the user interface, the DFG
has moved from raw digital map dala (a represen-
tation of & paper map on-screen) o 3-0 maps that
can be analyzed lo compare policy suggestions.
“We created river networks and drainage surfaces
from raw data, which are more useful to the biolo-
gist® because they do things the raw maps couldn't
do, such as simulate the fish swimming up the
streams, Akanhead says.

By Esther Shein, PC Week, Septemiber 23, 1586, Val. 13,
Murmber 38,

Blend is an example of such a tool. Java Blend allows the developer access to re-
lational data as Java objects, thus avoiding the mismatch between the relational
and object data models. Java Blend also has mapping capabilities to defingé Juva
classes from relational tables or relational tables from the Java classes [15].

11.8.1 Object-Relation Mapping

In a relational database, the schema is made up of tables, consisting of rows and
columns, where each column has a name and a simple data type. In an object



CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 25T

model, the counterpart to a table 1s a class (or classes), which has a set of anrib-
utes (properties or data members), Object classes describe behavior with methods.

A tuple (row) of a table contains data for a single entity that correlates to an
object (instance of a class) in an object-oriented system. In addition, a stored
procedure in a relational database may correlate to a method in an object-oriented
architecture. A stored procedure is a module of precompiled SQL code maintained
within the database that executes on the server to enforce rules the business has
set about the data, Therefore: the mappings essential to object and relational inte-
gration are between a table and a class, between columns and atributes, between
o row and an object, and between a stored procedure and a method.

For a ool 1o be able 1o define how relational data maps to-and from application
objects, it must have at least the following mapping capabilities (note all these are
two-way mappings. meaning they map from the relational system to the object and
from the object back to the relational system):

* Table-class mapping. _]'
= Table-multiple classes mapping.

= Table-inherited classes mapping.

= Tables-inhenited classes mapping.

Furthermore, in addition to mapping column values, the tool must be capable of
interpretation of relational foreign keys. The tool must describe both how the for-
gign key can be used to navigate among classes and instances in the mapped ob-
jeet model and how referential integrity 1s maintained. Referential integrity means
making sure that a dependent table’s foreign key contains a value that refers toan
existing valid tuple in another relation.

11.8.2 Table-Class Mapping

Table-class mapping isa simple one-to-one mapping of a table to a class and the
mapping of columns in a table to properties in a class. In this mapping, a single
table is mapped to a single class, as shown in Figure 11=11.

In such mapping. it is common to map all the columns to properties. However,
this 15 not required, and it may be more efficient to map only those columns for
which an object model is required by the application(s). With the table-class ap-

FIGURE 11-11
Table-class mapping. Each row in the table represents an object instance and each column in
the lable corasponds io an objsct atribute,

Car Table

cosk calar ke mode! Car

cnst
coler

¢ » make
o]

Tolie
yow
L‘:L[“ =

A ved
pe

(Lass
obieck
otk



258 PART FOUR; OBJECT-ORIENTED DESIGN

name | address | custiD | cmplD emplD

Customer

custdD

FIGURE 11-12

Table-multiple classes mapping. The custlD eclumn provides the discriminant. If the value for
custiD ks null, an Employea instance is created at un time; otherwise, 2 Customer instance is
created.

proach, each row in the table represents an object instance and each column in the
table corresponds to an object attribute, This one-to-one mapping of the table-class
approach provides a literal translation between a relational data representation and
an application object. It is appealing in its simplicity but offers little flexibility.

11.8.3 Table-Multipie Classes Mapping

In the table-multiple classes mapping, a single table maps to multiple noninherit-
ing classes. Two or more distinct, noninheriting classes have properties that are
mapped to columns in a single table. At run time, a mapped table row is accessed
as an instance of one of the classes, based on a column value in the table [11].

In Figure 11-12, the custiD column provides the discriminant. 1f the value for
custlD is null, an Employee instance is created at run time; otherwise, a Customer
instance is created,

11.8.4 Table-Inherited Classes Mapping

In table-inherited classes mapping, a single table maps to many classes that have
a common superclass. This mapping allows the user to specify the columns to be
shared among the related classes. The superclass may be either abstract or instan-
tiated. In Figure 11-13, instances of salarnedEmployee can be created for any row
in the Person table that has a non null value for the Salary column. If Salary is
null, the row is represented by an hourlyEmployee instance.

11.8.5 Tables-Inherited Classes Mapping

Another approach here is tables-inherited classes mapping, which allows the trans-
lation of is-a relationships that exist among tables in the relational schema into
class mheritance relationships in the object model. In a relational database, an is-a
relationship often 1s modeled by a primary key that acts as a foreign key to
another wable. In the object model, is-a is another term for an inheritance relation-



CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 259

Employes
nAmE
Person Table 0
address
name | address. | ssn | wage | salary
gy 7
Wage salary

FIGURE 11-13

Table-inherited classes mapping. Instances of SalaredEmploves can be created for any row in
the Parson table that has & non mull value for the salary column: If salary is null, Ih&rﬂwmer—
sasanted by an HourlyEmployes instance.

ship. By using the inheritance relationship in the object model, the mapping can
express a richer and clearer definition of the relationships than is possible in the
relational schema.

Figure 11-14 shows an example that maps a Person table to class Person and
then maps a related Employee table to class Employee, which isa subclass of class
Person. In this example, instances of Person are mapped directly from the Person
tzble. However, instances of Employee can be created only for the rows in the
Employee table (the joining of the Employee and Person tables on the SSN key).
Furthermore, SSN is used both as a primary key on the Person table for activating
instances of Person and as a foreign key on the Person table and a primary key on
the Employee table for activating instances of type Employee.

11.8.6 Keys for Instance Mavigation

In mapping columns to properties, the simplest approach is to translate a column’s
value into the corresponding class property value. There are two interpretations of
this mapping: Either the column is a data value or it defines a navigable relation-
ship between instances (i.., a foreign key). The mapping also should specify how
i convert each data value into a property value on an instance.

In addition to simple data conversion, mapping of column values defines the in-
terpretation of relational foreign keys. The mapping describes both how the for-
eign key can be used to navigate among classes and instances in the mapped ob-
ject model and how referential integrity is maintained. A foreign key defines a
relationship between tables in a relational database. In an object model. this asso-
ciation is where objects can have references to other objects that enable instance-
tp-1nstance navigation,



260 PiRT FOUR: OBIECT-ORIENTED DESIGN

Person Table

name |addregs: |- ssn
Person
KEDV
TR
address

Employer Table

onme | dept | ssn | salary 4 b ‘?

Employet Customer
dept COMpanY
salary

Customer Table
name | address | commpany

FIGURE 11-14

Tables-inherited classes mapping. Instances of Person are mapped directly from the Parson
table. However, instances of Employee can be created only for the rows in the Employse table
(the joining of he Employes and Person tablas on the ssn key). The ssn is used both as a pri-
mary key onthe Parson tabie and as a forsign key on the Person table and a primary key on
the Employes table for activating instances of type Employee.

In Figure 11-15, the departmentID property of Employee uses the foreign key
in column Employee.departmentID. Each Employee instance has a direct reference
of class Department (association) to the department object to which it belongs,

A popular mechanism in relational databases is the use of stored procedures. As
mentioned earlier, stored procedures are modules of precompiled SQL code stored
in the database that execute on the server to enforce rules the business has set about
the data. Mapping should support the use of stored procedures by allowing map-
ping of existing stored procedures 1o object methods.

11.9 MULTIDATABASE SYSTEMS

A different approach for integrating object-oriented applications with relational
data environments is multidatabase systems or heterogeneous database systems,
which facilitate the integration of heterogeneous databases and other information
sources.



CHAPTER 11: ACCESS LAYER: OBUECT STORAGE AND OBJECT INTEROPERABILITY 261

Department Table .l Employee Table l
name deparrmentIDy name | departmentID | ssn | salary
Diepartment Employes
nime fnme
department D saliry
£
FIGURE 11-15

lass instance relationship,

Heterogeneous information systems facilitate the integration of heterogeneous
information sources, where they can be structured (having regular schema), semi-
structured, and sometimes even unstructured. Some heterogeneous information
systems are constructed on a global schema over several databases. This way users
can have the benefits of a database with a schema (i.e.. uniform interfaces, such
as an SQL-style interface) to access data stored in different databases and cross-
database functionality. Such heterogeneous information systems are referred to as
Jederated multidatabase systems [9].

Federated multidatabase systems, as a general solution to the problem of inter-
operafifig heterogeneous data systems, provide uniform access to data stored in
multiple databases that involve several different data models, A multidatabase £ys-
tem (MDBS) is a database system that resides unobtrusively on top of, say, exist-
ing relational and object databases and file systems (called local database svstems)
and presents a single database illusion to its users (see Figure 11-16). In particu-
lar, an MDBS maintains a single global database schema against which its users
will issue queries and updates; an MDBS maintains only the global schema, and
the local database systems actually maintain all user data, The global schema is
constructed by consolidating (integrating) the schemata of the local databases: the
schematic differences (conflicts) among them are handled by neutralization (ho-
mogenization), the process of consolidating the local schemata.

The MDBS translates the global queries and updates for dispatch to the appro-
priate local database system for actual processing, merges the results from them,
and generates the final result for the user. Further, the MDBS coordinates the com-
mitting and aborting of global transactions by the local database systems thal
processed them to maintain the consistency of the data within the Jocal databases.
An MDBS actually controls multiple gateways (or drivers), It manages local data-
bases through the gateways, one gateway for each local database.



262 erRT FOUR: CRIECT-DRIENTED DESIGN

Application

FIGURE 11-16

A multidatabasae system (MDBS) Is a database system thal résides on top of, say exdsting reta-
tional and object databases and file systems (called local database systems) and presents a
gingle database ilusion to its usars. In other words, users are under an impression that they are
working with a single database.

To summarize the distinctive characteristics of multidatabase systems,

* Automatic generation of a unified global database schema from local databases,
in addition to schema capturing and mapping for local databases.

* Provision of cross-database functionality (global queries, updates, and transac-
tions) by using unified schemata,

* Integration of heterogeneous database systems with multiple databases.

* Integration of data types other than relational data through the use of such tools
as driver generators.

* Provision of a uniform but diverse set of interfaces (e.g., an SQL-style inter-
face, browsing tools, and C++) to access and manipulate data stored in local
databases [9).

11.9.1 Open Database Connectivity: Multidatabase Application
Programming Interfaces

The benefits of being able to port database applications by writing to an applica-
tion programming mterface (API) for a virtual DEMS are so appealing to software
developers that the computer industry recently introduced several multidatabase
APIs. Developers use these call-level interfaces for applications that access multi-
ple databases using a single zet of function calls, minimizing differences in appli-
cation source code [10]. Open database connectivity (ODBC) is an application pro-
gramming interface that provides solutions to the multidatabase programming



CHAPTER 11; ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILTY 263

problem. Initially proposed by Microsoft, ODBC provides a vendor-neutral mech-
anism for independently accessing multiple database hosts.

ODBC and the other APIs provide standard database access through a common
client-side interface. It thus allows software developers to write desktop applica-
tions without the burden of leamning mu]tipl: database APls. Another ODBC ad-
vantage is the ability to store data for various applications or data from different
sources in any database and transparently access or combine the data on an as-
needed basis. Details of the back-end data structure are hidden from the user.

As a standard, ODBC has strong industry suppart. Currently, a majority of soft-
ware and hardware vendors, including both Microsoft and Apple, have endorsed
ODBC as the database interoperability standard, In addition, most database ven-
dors either provide or will soon provide ODBC-compliant interfaces.

ODBC is conceptually similar to the Windows print model, where the applica-
tion developer writes fo a generic printer interface and a loadable driver maps that
logic to hardware-specific commands. This approach virtualizes the target printer
or DBMS because the person with the specialized knowledge to make the appli-
cation logic work with the printer or database is the driver developer and not the
application programmer. The application interacts with the ODBC driver manager,
which sends the application calls (such as SQL statements) to the database, The
driver manager loads and unloads drivers, performs status checks, and manages
multiple connections between ﬂppilcabuns and data sources (see Figure 11-17).

FIGURE 11-17
Open database connectivity (ODBC) provides a mechanism for cresting a virtual DEMS.

Application programs OEgC

Laadable ODBC driver




264 PART FOUR: OBJECT-ORIENTED DESIGH

11.10 DESIGNING ACCESS LAYER CLASSES

Now that we studied DBMS, client-server, distributed objects, OODBEMS rela-
tional-object systems, multidatabases, and other refated technologies, we have a
better appreciation for why we need an access layer.

The main idea behind creating an access layer is to create a set of classes that
know how to communicate with the place(s) where the data actually reside. Regard-
less of where the data actually reside; whether it be a file, relational database,
mainframe, Intemet, DCOM, or via ORB, the access classes must be able to translate
any data-related requests from the business layer inte the appropriate protocol for daia
access. Furthermore, these classes also must be.able to translate the data retrieved
back into the appropriate business objects. The access layer's main responsibility
is to provide a link between business or view objects and data storage. Three-layer
architecture, in essence, is similar to three-tier architecture. For example, the view
layer corresponds to the client tier, the business layer to the application server tier,
and the access layer to the database tier of three-tier architecture (see Figure 11-18),

The access layer performs two major tasks:

1. Translare the request. The access layer must be able to translate any data-
refated requests from the business layer into the appropriate protocol for data

FIGURE 11-18
The business layer objects and view layer uhfacts should not directiy socess the database. In-
stead, they should consult with the access layer far all external system connectivity.

DBMS server or
Legaey data and
] application

E g | - ﬂb

Clhient Clheny Chent



CHAFTER 11 ACCESS LAYER: OBJECT STORAGE AMD OBJECT INTERORERABILITY 265

gccess. (For example, if customer number 55552 needs to be retrieved, the ac-
cess layer must be able to create the comvect SQL statement and execute ir)

. Translare the results The access layer also must be able to transiate the data re-
irieved back into the appropriate business objects and pass those objects back
into the business laver.

1L

The main advantage of this approach is that the design is not tied to any data-
base engine or distributed object technology, such as CORBA or DCOM. With this
approach, we very easily can switch from one database to another with no major
changes to the user interface or business layer objects. All we need o change are
the access classes’ methods. Other benefits of dccess layer classes are these:

* Access layer classes provide ¢asy migration to emerging distributed object tech-
nology, such as CORBA and DCOM.

+ These classes should be able to address the (relatively) modest needs of two-tier
client-server architectures as well as the difficult demands of fine-grained, peer-
to-peer distributed object architectures:

Designing the access layer object is the same as for business layer objects and the
same guidelines apply to access layer classes, so we do not repeat them here (see
Chapter 10). However, we need to deal with the following fundamental questions:

* How do we decide what access layer objects to include?
* How doaccess layer objects fit with business layer (or view layer) objects? Or,
what is the relationship between a business class and its associated access class?

11.10.1 The Process

The access layer design process consists of the following activities (see Figures
[1-19 and 11-20). If a class interacts with a nonhuman actor, such as another sys-
iem, database. or the Web, then the class automatically should become an aceess
class. The process of creating an access class for the business classes we identi-
fied sio far follows:

L. For every business class identified, mirror the business elass package. For every
business class that has been identified and created, create one access class in
the access layer package. For example, if there are three business classes
(Class1, Class2, and Class3). create three access layer classes (Class1DB,
Class2DB, and Class3DB).

2. Define relationships. The same rule as applies among business class objects
also applies among access classes (see Chapter 8).

3. Simplify classes and relationships. The main goal here is 1o eliminate redun-
dant or unnecessary classes or structures. In most cases, you can combine sim-
ple access classes and simplify the super- and subclass structures.

X1, Redundant classes. If you have more than one class that provides similar
services (e.g., similar Translate request and Translare: results), simply se-
lect one and eliminate the other(s).

32. Method classes. Revisit the classes that consist of only one or two meth-
ods to see if they can be eliminated or combined with existing classes. If




266 PART FOUR: OBJECT-ORIENTED DESIGN

Mirror super-sub
relationships
Mt done

FIGURE 11-19
The procass of creating access layer classes.

you can find no class from the access layer package, select its associated
class from the business package and add the method(s) as a private
method(s) to it. In this case, we have created an access method.

4. lierate and refine.

In this process, the access layer classes are assumed (o store not only the at-

tributes but also the methods. This can done by utilizing an QODBMS or a rela-
tional database (as described in section 11.8.1).

Another approach is to let the methods be stored in a program (e.g., a compiled

C++ program stored on a file) and store only the persistent artributes. Here is the
modified process:

1.

21.

For every business class identified (see Figure 11-21), determing if the class has
persistent dara, An attribute can be either transient or persistent (nontransient),
An attribute is rransiént if the following condition exists; Temporary storage for
an expression evaluation or its value can be dynamically allocated. An atiribute
ig persistenr if the following condition exisis: Diata must exist between execu-
tions of a program or cutlive the program. If the method has any persistent at-
tributes, go 1o the next step (mirror the busingss class package); otherwise, the
class needs no associated access layer class.

Mirror the business class package. For every business class identified and cre-
ated, create one access class in the access layer package. For example, if there
are three business classes (Class1, Class2, and Class3), create three access layer
classes (Class1 DB, Class2DB, and Class3DB).



CHAPTER 11 ACCESS LAYER: OBJECT STORAGE AND DBJECT INTEROPERAEILITY 287

Step 1. Mirror bosiness class package

Business Access
layer layer
Class] Classi DB
—
Classd Class3 Class2DB Clrss3DE

Step 2. Define relationships among access lnyer class

Arcess
loyer
Class1 DB
| 1
ClassIDH Clpss3DB

Step 3. Simplify classes and relationships

Businesy . Acoeis
layer l layer !
Class] ClassIDB
| ‘? ) [ 4‘ |

- .

Class? Classd Class2DB ass3nE”

P
A W

7 “

FIGURE 11-20
The process of creating access layer classes,




268 FART FOUR: ORJECT-ORIENTED DESIGN

W
Mot d ' H 1stent data
i Define. RERRER,
refafionships
i,
W

Normolize classes
and relationships

Done

FIGURE 11-21
The process of creating access layer classes. Storing only the persistent altributes.

3. Define relationships. The same rule as applies among business class objects
also applies among access classes (see Chapter B).

4. Simplify classes and relationships. The main goal here 15 to eliminate redun-
dant or unnecessary classes and structures. In most cases, you can combine sim-
ple access classes and simplify the super- and subclass structures.

4.1. Redundant classes. If you have more than one class that provides similar
services (e.g., similar Translate request and Translate results), simply se-
lect one and eliminate the other(s).

4.2. Method classes. Revisit the classes that consist of only one or two meth-
ods to see if they can be eliminated or combined with existing classes.

5. Iteratz-and refine.

In either case, once an access class has been defined, all you need do is make it
a-part-of its business class (see Figure 11-22).

Next, we apply this process to design the access layer classes for our bank sys-
tem application. To make the problem more interesting, we use a relational data-
base for storing the objecis and the second approach in designing its access layer
classes, assuming the methods will be stored in the program.




-

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 269

Business class
Clagal

Access class
for Class]

ClazslDB

FIGURE 11-22
The ralation between a business class and its associated sccess class.

11.11 CASE STUDY: DESIGNING THE ACCESS LAYER FOR THE
VIANET BANK ATM

We are ready to develop the access layer for the ViaNet bank ATM. Remember
that the main idea behind an access layer is to create a set of classes that know
how to communicate with the data source. They are simply mediators between
business or view classes and storage places or they communicate with other ob-
jects over a network through the ORB/DCOM, in the case of distributed objects.

11.11.1 Creating an Access Class for the BankClient Class

Here, we apply the access layer design process 1o identify the access classes,
Step 1. Determine if a class has persistent data.

Step 2. Mirror the business class package. Since the BankClient has persistent at-

tributes, we need to create an access class for it
Step 3. Define relationships.

TheBankClient class has the following attributes (see Chapter 10):

firsiName
lastMame
cardNumber
pinNumber
dccount

The firstName. lastName, cardNumber, and pinNumber are persistent attributes,
and account is used to link (or implement the association among) the BankClient
and Account classes. To link the BankClient table to the Account table we need to
use the card number (cardNumber) as a primary key in both tables (see Figure 11-23),



270 paRT FOUR: OBJECT-DRIENTED DESIGM

BANKCLIENT Tabbe l l ACCOUNT Table
firstMame | lnsthame | cardNumber | pinMomber cardNuenbes
BankClient Account
firstname number
Insiname balance
cardMumber bankClient
pinMumber
A socount /, ransaction

S el

FIGURE 11-23 N

The cardMumber cofumn facilitates the link between the BANKCLIENT and ACCOUNT tables. It
also Implements the aseceiation among the BankChent and Account clagszes. Mote that the card-
Mumber is a primary key for the ACCOUNT and BANKCLIENT tables,

Here we decided to create an access class instead of creating access method
within the BankClient class. Let us call our access class BankDB. The purpase of
this class is 1o save the state of the BankClient objects. In other words, 1t must up-
date and retrieve the BankClient atiributes by translating any data-related requests
from the BankClient class into the appropriate protocol for data access.

Notice that retrieveClient method of BankClient object simply sends a message
to the BankDB object to get the client information:

Listing 1.

BankClienr: :+retrieveClient (aCardfumber, aPIN): BankClient
aBankDB : BankDB
aBankDB.retrievellient (afardfumber, aPIN)

In here, all we need to do is to create an instance of the access class BankDB
and then send a message to it to get information on the client object. The re-
trieveClient of the BankDB class will do the actual work of getting the informa-
tion from the database. Let us assume our database is relational and we are using
SQL:



CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 271

Listing 2.
ZarkDE: i +retrieveClisnt (aCardiumber, APTN): BankClient
sELECT firstName, lastHame
FRCM  BANECLIENT
WHERE wardiurber = aCardnumber and pinthumber =apin)

The retrieveClient return type is defined as BankClient to return the attributes of
the BankClient. Access class methods (as you might guess) are highly language
dependent. Remember that in actuality, during design, you have to select your im-
plementation language. Since implementation is beyond the scope of this book and
10 keep the description language independent, the implementation details have
neen skipped for the most part. A return of null means that the supplied PIN num-
ber is not valid,

The updateCliens method updates or changes attributes such as pinNumber,
firstName, or lastName. Here again, just like the retrieveClienr method, the
BankClient::updateClient sends a message to the access class BankDB::update-
Client to update client information;

Listing 3.
S=nklB: c+updateClient (aClient: BankClient, aCard¥umber: String)
UPOATE BANKCLIENT
SET firstHame = aClient.firstiame
SET lastiiame =aClient.lastName
SET pinNumber = aClient .pirNumber
WHERE ‘cardiumber = aCardnumber)

The Account class has the following attributes {see Chapter 10):

number
halanr_:_e
bankClient
transaction

Attributes such as number and balance are persistent. The bankClient attribute is
transient and is used for implementing the association between the Account and
BankClient classes. We already have taken care of this link by adding cardNumber
1o the Account table. However, to link the Account table to the Transaction table, we
need to add the rransiD as a foreign key to the Account table (see Figure 11-24).

Figure 11-25 shows how generalization relationships among the Account,
CheckingAccount, and SavingsAccount classes have been represented in our rela-
uonal database. Here, since we are using a relational database that provides no in-
heritance or super-sub generalization, we added four columns to the Account table:
one for the savings account number (sNumber), one for the checking account
number (eNumber), one for the savings balance (sBalance). and finally one for the
checking balance (cBalance).

According to step 2, we need to add three more access classes: one for the
Account class (AccountDB), one for the CheckingAccount class (CheckingAc-
coumDB), and one for the SavingsAccount class (SavingsAccountDB). However,
al this point, we realize that we need an access class with only four methods, two




272 PaRT FOUR: OBJECT-ORIENTED DESIGN

transI) | transDaie | transTime | ransType | amount | postBalance

TRANSACTION Table
| ' '
firstName { lastiome | cardMNumber | pinNumber candMumber trangl Dy
BANKCLIENT Table ACCOQUNT Table
Transaction
: transilr
BankClient Account transDiate
firstmmme nimber tranisTime
]M IEEI'I'iT}'PE
eardMumber Balince AUt
pinilumber bunkClizm posiBalance
agcant /'u-unum:lnn 4—\/» BOCOIANT
cardMNumber rransID

FIGURE 11-24
To represent the association Getwesn the ACCOUNT and TRANSACTION taties, we need 1o
add transiD to the ACCOUNT table as a foreign key,

methods for SavingsAccount (update and retrieve) and two methods for
CheckingAccount. The Account class is an abstract class (has no instances since
the accounts are either savings or checking accounts) and therefore needs no ad-

ditional methods. The methods are
updateSavingsAccount
retrieveSavingsAccount
ipdareChéckingAccount
refrieveCheckingAccount




CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 273

eransiD | rransDate | ransTime | mansType | amount | postBalance
TRANSACTION Table
v ! '
firstName | last™ame | cardMumber | pinMumber cardMumber | sMumber | cMumber | ransID | sBalance | cBalance
BANKCLIENT Table ACCOUNT Table
Transaction
i
BunkClhient Mecoumn ";:I;;:Eg
firsiname nimbar transTime
lastname rans Type
cardMumber halanice famount
pinfumber bankClizm postBalance
W account /’ transaction «§— = BCCOURL
cardNurmber ‘T
CheckingAccouni SavingsAccount
RAVINES checking

FIGURE 11-25

Four columns are added ta the ACCOUNT table: one for the savings account number (ENUm-
bevl, one for the checking account numbar {eNumbar), one for the savings balance (sBalamcs),
and one for the checking balance (cBalance). Instances of SavingsAccount and Checkingsc-
count can’ be created for any row in the ACCOUMT table that has a non nul value for shitmbar

ar eNumber




274 PuRT FOUR: OBJECT-DRIENTED DESIGN

The previous section explained that method classes are classes that consist of only
one or two methods, and it is a good idea to combine method classes with exist-
ing access clagses if it makes sense to do so. If you can find no class from the ac-
cess layer package, select its associated class from the business package and cre-
ate a private method(s) and add the methods to it. However, here, we add the
methods to the BankDB class. Afier all, an Account is associated with a BankClient
class and most times account and client information need to be accessed at the
same time, Here SavingsAccouns; retrieveAccount and SavingsAccount;:updareAe-
count methods send messages to the access class BankDB: retrieveSavingsAccount
and BankDB: updareSavingsAceount methods to perform the job. The CheckingAc-
count is similar (see Listings 6 and 10).

You might be wondering why SavingsAccount::refrieveAccount needs (o use the
BankDB:: retrieveSavingsAceount to perform the job. Why does it not do the job
itself? Well, SavingsAccount: retrieveAccount can perform this operation without
calling the access class. However, if you need to switch to a different database,
you must modify the method. Therefore, if you want to create an access method,
make sure to make its protocol private so the impact on other classes will be min-
imal. For most cases. it is possible to use the access class instead of creating pri-
vate access methods,

The following listing depicts the implementations of these methods:

Listing 4.
SavingsAccount : s =ratrisvelocsunt () : Aocount
bankDB, retrieveSsvingshcoount [(bankClient.cardiumber, number)

The retrieveAccount 1s an example of polymorphism (in which the same oper-
ation may behave differently on different classes), where it is overloading its su-
perclass method by sending a message to the access class BankDBE object to re-
trieve the savings account information. The same mechanism has been used to
invoke other access class methods:

Listing 5.
BankfB:: +retrieveSavingsiccount (aCardiumber: String, savingsiumber:
String) : Account
SELECT sBalance, transID,
FROM ACCOUNT
WHERE cardihumber = aCardiumber and sumber = savingsiumber |

Listing 6.
Checkinghcoount : ; —retrievefocount () : Account
bankDE. retrieveCheckinghocdunt (bankClient . cardiumber, number)

Listing 7.

BankDB: : +retrievelCheckingAccount (aCardiumber: String, checkingiumber :
String): Acoount

SELECT cBalance, transiD,

FROW ACCOUNT
WHERE cardiumber = aCardiiumber and chumber = checkinghumber |



CHAPTER 11: ACCESS LAYER: DBIECT STORAGE AND OBJECT INTERODPERABILITY 275

Listing 8.
=avingsAccount ; ; —updateAccount () : Account
=k updateSavingsAicoount (bankClient . cardiumber , number, balance)

Listing 9.

ZankDE: : +updateSavingaiocount (aCardPinNumber: String, alumber: String
cawBalance: float)

JEDATE - ACCOUNT

Set sHalance = nswHalance )
WHERE cardhumber = aCardiumber and shumber = alumber )

Listing 10.
Chackingiocount : : =updateiocount (§ 1 ACocount
berkl8. updateCheckingfccount (bankClient , cardiumber, number, balance)

Listing 11.
zankDB: r+updataCheckinghccount (aCardPinNumber: String, aNumber:
stringnewBalance: flocat)
JFDATE - ACCOUNT
Set cBalance = newBalance
WHERE cardiumber = aCardiumber and chumber = aNumar)

Figure 11-26 depicts the relationships among the classes we have designed so
far, especially the relationships among the aceess class and other business classes.
Designing an access class for the Transaction class is left as an exercise; see prob-
lemn 1.

11.12 SUMMARY

A database management system (DBMS) is a collection of related data and asso-
ciated programs that access, manipulate, protect, and manage data. The funda-
mental purpose of a DBMS is to provide a reliable persistent data storage facility
and the mechanisms for efficient, convenient data access and retrieval,

Many modem databases are distributed databases, This implies that portions of
the database reside on different nodes (computers) and disk drives in the network.
Usually, each portion of the database is managed by a server, a process responsi-
ble for controlling access and retrieval of data from the database portion. The
server dispenses information to client applications and makes queries or data re-
quests to the servers. Clients generally reside on nodes in the network other than
those on which the servers execute,

Client-server computing is the logical extension of modular programming. The
fundamental assumption of modular programming is that separation of a large
piece of software into its constituent parts (“modules”) creates the possibility for
easier development and better maintainability.

Distributed computing is poised for a second client-server revolution, a transi-
ton to an immensely expanded client-server era. In this new client-server model,
servers are plentiful instead of scarce (because every client can be a server) and




276 PuAT FOUR: OBIECT-ORIENTED DESIGN

| Business classes
Bank
o
O
EankClient
#firstName : Stmng
#lastMome : String ATMMachine
#cardMumber 7 String n
i i = gpo——o  Haddress : String
#mem'ﬂ_ﬁ =Sieing M state : Smng
#ooccount ; Acoount
FhankDB: BunkDBE
+verfyPassword()
T Haz | |
1.2
Accaunt .
. ¥number © Sng Transaction
Avcess classies) I #balance ; float #translD ; String
itbankClient: BankClient Accouiil- MiransDate ; Dige
BankDYB fransaction: Transaction | * Trapsactan #rransTime | Time
#hankDB: Rank DB #iransType : String
< +deposit) ! Hamount foat
+withdraw| #pastBalance ; fiow
7= Mereate Transaction( 1) faccount : Account
& m:gll_l-nn![(: NretrieveAccountl )
HemneveSavingsAccount) Hupdite Accounti)
supdateSivingsAccount( )
+remeveCheckingAccount )
+updmeChécking Account() I
CheckingAccount || é‘::;f:; SavingsAccount
#aavitigs | Agoount 1 Achacking . Account
“withdrawi ) —retrigve Account] )
—Tetreve Account ) —update Account( )
= updateAccounti )
FIGURE 11-26

A still more complete UML class diagram of tha ViaNet Bank ATM system, |t shows the relation-
ship of the new actass ciass (BankDB) with the Account and BankClient business classas. Note
the addition of the bankDE attributes 1o the Account and BankClient classes and addition of four
new private methods to checkinoAccount and SavingsAccoun! classes,

proximity no longer matters. The new generation of the client-server model
is made possible by the recent exponential network growth and the progress in
network-aware multithreaded desktop operating systems.

The object-oriented database technology is a marriage of object-oriented pro-
gramming and database technology. The programming and database come together
to provide what we call ebjecr-oriented databases. By combining object-oriented




CHAPTER 11! ACCESS LAYER: DBIECT STORAGE AND OBJECT INTERCPERABILITY 277

programming with database technology, we have an integrated application devel-
cpment system, a significant characteristic of object-ariented database technology,
“The Object-Oriented Database Systém Manifesto” by Malcom Atkinson et al,
describes the necessary characteristics a system must satisfy to be considered an
object-oriented database. These categories can be broadly divided into object-
oriented language properties and database requirements,

In practice, even though many applications increasingly are developed using
object-oriented programming technology, chances are good that the data those ap-
plications need to access live in a very different universe—a relational database,
To resolve such a mismatch, the application objects and the relational data must
5e mapped. Tools that can be used to establish the object-relational mapping
processes have begun to emerge. The main process in relational-object integration
i« defining the relationships between the fable structures (represented as schemata)
i the relational database with classes (representing classes) in the object model.

A different approach for integrating object-oriented applications with relational
data environments involves multidatabase systems or heterogeneous database sys-
tems, which facilitate the integration of héterogeneous databases and other infor-
muation sources,

The main idea behind an access layer is to create 1 set of classes that know how
to communicate with a data source. Regardless of whether the data actually are in
1 file, relational database, mainframe. or Internet, the access classes must be able
w0 translate data-related requests from the business layer into the appropriate pro-
tocol for data access, Access layer classes provide easy migration to emerging dis-
iributed object technology, such as CORBA and DCOM. Furthermare, they should
be able to address the (relatively) modest needs of two-tier client-sérver architec-
tures as well as the difficult demands of fine-grained, peer-to-peer distributed ob-
et architectures,

KEY TERMS

Abort (p. 244)

Alomic type of objects (p, 253)

Atomicity (p. 244)

Commit (p. 244)

Commeon object request broker architecture (CORBA) (p. 251)
Data definition language (DDL) (p. 242)

Data manipulation language (DML) (p. 242)

Database management system (DBMS) (p. 237)
Distributed component object model (DCOM) (p. 252)
Distributed database (p. 245)

Distributed object computing (DOC) (p. 250)

Foreign key (p. 241)

Forward engineering (p. 255)

Homogenization (p. 261)

Meta-data (p. 239)




278 pPanT FOUR: OBJECT-ORIENTED DESIGN

Multidatabase system (MDBS) (p. 261)
MNeutralization (p. 261)

Object management group (OMG) (p. 251) _
Object-oriented database management system (QODBMS) (p. 252)
Object request broker (ORB) (p. 251)

Persistence (p. 237)

Primary key (p. 241)

Referential integrity (p. 257)

Reverse engineenng (p. 255)

Schema (p. 239)

Stored procedure (p. 257)

Structured query language (SQL) (p. 243)
Transaction (p. 244}

Tuples (p. 241)

REVIEW QUESTIONS

1. How do vou distinguish transient data from persistent data?
2. What is 2 DEMS?
3. Is a persistent object the same as a DBMS? What arc the differences?
4. What i a relational database? Explain tuple, primary key. and foreign key,
5. What is a database schema? What is the difference between a schema and mieta-data?
6. What is a DDL?
7. What 3 distributed database?
8. What is concurrency contral?
9. What is shareability?
10. What is a transaction?
11. What is a concurrency policy?
12. What is & query?
13. Describe client-server computing.
14, What are different types of servers? Briefly deseribe each.
15, Why do you think DOC is so important in the computing world?
16, Describe CORBA, ORB, ind DCOM,
I7. What is an QODBMS? Degcribe the differences bérween an OODBEMS and objecy-
oriented programming,
18, Deseribe the necessary characteristics that o system must satisfy o be considered -an
object-onented database,
19, Descrbe reverse and forward engineening.
20. Describe a federated multidatabase system,
21. Describe the process of creating the access layer classes.

PROBLEMS

1. Design an access class for the Transaction class of the bank system. Try both alterna-
tives and write a paragraph pro or con for each design, (Design it once us un access class,
the second time as access methods. Compare these approaches and report on their sim-
ilarities and differences.)




CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILTY 279

2. Consult the WWW to obtain information on DOC, especially comparing CORBA with
DCOM. Write a research paper based on your findings.

3. Consult the WWW to obtain information on the object-relational systems and tools. Se-
lect one of the development tools, and write on your rationale for selecting that 1ool.

4. Consult the WWW (o obtain information on OODBMS vendors, Select one of the de-
velopment tools and write on your rationale for selecting that tool.

5, Consult the WWW or the library 1o obtain an article on objected-oriented DML and
query languages. Write a paper based on your findings.

6. Consult the WWW or the library to obtain an article on the Web objects. Write a paper
based on your findings.

7. Conzult the WWW or the library to obtain an article on ActiveX. Write & paper baged
on your findings.

8. Some developments in 5CL technology involve the integration of object-oriented feaiures
into mainstream commercial databases. Despite the growing number of object databases
available 1oday, there is no commercial SQL standard to create and access objects stored
in such databases. OQL (object query language) and SQL3 are two separate but over-
lapping efforts to merge object database technology with standardized, néxt-generation
guery fanguages. Do research to find out more about SQL3 and OQL.

9, The ViaNet bank sysiem wants to go on-line and create on-line banking, where cus=
tomers can be connected elecironically to the bank through the Internet and should be
able 1o conduct almost the same banking transactions as they would with a regular ATM
maching. The only variation from previous requirements is that they cannot withdraw
cash from the ATM machine, but instead they can write electronic checks w'a payee,
Design thie architecture for the on-line banking of the ViaNet bank.

L. Atkinson, M. P; Bailey, P. J.; Chrishalm, K. J.; Cockshott, W, P.; and Morrison, R.
“An Approach to Persizstent Programming” Compurer Journal 26, no. 4 (1983,
pp. 360-65.

. Atkinson, M.; Bancilhon, F.; DeWilt, D; Diurich. K: Maier. D.; and Zdonik. “The
Object-Oriented Database System Manifesto.” In Proceedings of the. First International
Conference on Deductive and Objeci-Oriented Databases, Kyoto, Japan, December
1989, pp. 22340,

. Berson, Alex. ClientServer Architécrure. New York: McGraw-Hill, 1992

. Brown, A. L.; and Morrison, R. "A Generic Persistent Object Store.” Software Engi.
neering Jounal 7, no. 2 (1992), pp. 161-68.

5. Dinrich, Klaus R, “Object-Oriented Database Systems: The Notion and lssues.” Pro-
ceedings of the 1986 [EEE Inernational Workshop on Object-Oriented Database
Systems,

6. Kalakota, Ravi, comp.client-server FAQ), 1996,

7. Kalakota, Ravi; and Whinston, Andrew. The Frontfers of Electronic Comimerce. Reading,
MA: Addison-Wesley, 1995,

8. Kim, Won. Objecr-Oriented Database, Cambndge, MA: Massachusetis Institute of
Technology Press, 1990,

9. Lee, Juhnyoung: and Forslund, David, “Coexizstence of Relations and Objects in Dis-
tributed Object Computing.” White paper, Sunrse (July 26, 1995},

100 Morh, Ken. “"Understanding Multidatabase APls and ODBC." DEMS (June 1994).

B2

A Lad



28B0 ear7T FOUR: OBJECT-ORIENTED DESIGN

L
1z
13:

14.
i5.

ONTOS, Inc. "Object/Relationsl Integration: How to Use Objects (o Enhance Your
Relational Data,” White paper, 1998,

Rob, Peter; and Coronel, Carlos, Darobase Svsremy— Désign, Impleméntation, and
Management, 2d ed. Bélmont, CA: Wadsworth Publishing Company, 1997,
Robertson-Dunn, Bernard, comp.client-server FAQ, 1996,

Tavlor, Lloyd. comp.client-server FAQ, 1996,

White, Ser; Cattell, Rick; and Finkelstein, Shel., “Enterprise Juva Platform Data Ac-
cess” Proceedings of ACM SIGMOD International Conference on Mandgement of
Data 27, no. 2 (June 1998).




CHAPTER 12

View Layer: Designing
Interface Objects

Chapter Objectives

You should be able to define and undérstand
» ldeniifying view classes.

* Designing imerface objects,

12.1 INTRODUCTION
Once the analysis is complete (and sometimes concurrently), we can start design-

ing the user interfaces for the objects and detl:rmmmg how these objects are to be

presented. The 1 main goal of a user interface (Ul) is to display and obtain needed

information in an accessible, efficient manner. The design of the software's inter-
face, more than anything else, affects how a user interacts and therefore experi-
ences an application [5]. It is important for a design to provide users the informa-
tion they need and clearly tell them how to successfully complete a task. A
well-designed Ul has visual appeal that motivates users 10 use your apphcnnnn In
addition, it should use the limited screen space el‘ﬁcmntly

In this chapter; we learn how to design the view layver by mapping the Ul
objects 1o the view layer objects, we look at Ul design rules based on the design
corollaries, and finally, we look at the guidelines for developing a graphical user
interface, A graphical user interface (GUL) uses icons to represent objects, a
pointing device to select operations, and graphic imagery to represent relation-
ships. See Appendix B for a review of Windows and graphical user interface ba-
sios and treatments.

12.2 USER INTERFACE DESIGN AS A CREATIVE PROCESS

Creative thinking is not confined to a particular field or a few individuals but is
possessed in varying degrees by people in many occupations: The artist sketches,
the journalist promotes an idea, the teacher encourages student development, the

281



282 rFoRT FOUR: OBIECT-ORIENTED DESIGN

Real-World Issues on Agenda

TOWARD AN OBJECT-ORIENTED USER INTERFACE

In the mid-1880s, mainstream PC softwara devel-
opers started making the move fram character-
based user interfaces such as DOS to graphical
user interfaces (GLIs). We now face the next major
shift in U design, from GUI to OOUl (object-
oriented user interface).’ Like the last soffware de-
sign transition, the move to GOUI requires some
rethinking abowtl how to design software, not enly
from the development side bul also from the human
computer inferface side.

Why abjects? Tandy Trower, direcior of the Ad-
vanced User Interface group at Microsolt explains
that using objects to express an intarface is'a nat-
ural choice because we interact with our environ-
ment largely through the manipulation of objecs.
Objects also allow the definition of a simple, com-
man sat of interactive conventions that can be ap-
plied consistently across the interface, For example,
an object has properties; characleristics, or atirib-
utes that define ils appearance or state, such as iis
color or size; Because objects, as large as a file or
as small a5 a single character, can have properties,
viewing and editing those properties can be gener-
alized across the interdace [5].

An object-oriented user interface focuses on
objects, the “things" people use to accomplish thelr
wark, Users see and manipulate object representa-
tions of thelr information. Each different kind of ob-
ject supports actions appropriate for the Infarmation
it represents. Typical users need not be aware of
computer programs and underlying computer tech-
nology [2].

While many of the concepls-are similar, object-
oriented programming (OOP) and object-oriented
user inferlaces are nol the same thing. Simply us-

ing an object-oriented language does not guarantes
an O0UI; as a matter of fact, you need not use an
object-oriented language to create an OOUI, but it
helps. Because the concepts involved are similar,
the two disciplines can be used in a complementary
relationship. The primary distinction 1o keep in mind
i& that QOUI design concentrales on the objects
perceived by users, and object-oriented program-
ming facuses on implementation details, which of-
{en need to be hidden from the user,

An DOU| allows 2 user o focus on objects and
woark with them directly, which more closely reflects
the user's view of doing work. This is in contrast to
the traditional application-criented or current graph-
leal user interfaces, where users must find a pro-
gram appropriate for both the task they want to per-
form and the type of information they want to use,
siart the program, then use soma mechanism pro-
vided by the program, such as an Open dialog, fo
locate their information and use it

00Ul UNDER THE MICROSCOPE

An object-oriented user interface allows organizing
objeciz in the computer environmant similarly to
how we organize objects in the real world, Wa can
keap objects used in mamy tasks ina comman, con-
venlent place and objects used for specific tagks in
maore specific places:

Ul objects typlcally are représented on a user's
goreen as icons, loons are small graphic images:
that help & user identify an object. They typically
consist of a picture that conveys the object's class
and a text title that Identifies the specilic objscl
lcons are intendad to provide a concise, easy-to-
manipulate representation of an object regardless

scientist develops a theory, the manager implements a new strategy, and the pro-
grammer develops a new software system or improves an existing system o create
a hetter one.

Creativity implies newness, but often it is concerned with the improvement of
old products as much as with the creation of a new one. For example, newly cre-
ated software must be useful, it should be of benefit to people. yet should not be
so much of an innovation that others will not use it. A “how 1o make something
better” attitude, tempered with good judgment, is an essential characteristic of an
effective, creative process.



CHAPTER 12. VIEW LAYER: DESIGNING INTERFACE cRuECcTs 283

BOX 12.1 [CONTINUED)

of how much additional information the object may
contain. If desired, we can "open” an icon to see.an-
other view with this additional Information. We can
pardorm sictions on icons wsing various lechnigues,
such as point selecting, choosing an action from &
manu, of dragging and dropping. lcons halp depict
the class of an object by providing a pictorial repre-
sentation, For example, consider Windows 98 or its
predecessor Windows 85, where you can click the
right mouse button while selecting any object (lcon)
on the deskiop, which will result in & menu popping
up that gives access to the icon's propernties and the
operations possible on the icen.

Although we create apd manipulate objects,
many pecple never need 1o ba consciously aware of
the ciass to which an object belongs. For example,
& person approaching a recliner need not stop and
think, “This |s a sofa, which belongs to the class
chair. Therefore, | can sit on it” Likewise, & user
can work with charts and come to expect that all
charts will behave in the same way without caring
thal the charts are a subclass of the dala object
class,

Ul classes also are very useful 1o you when de-
signing an interface, because they force us to think
about making clear distinctions among the classes
of objects that should be provided the user, Classes
must be carefully defined with respect 1o tasks and
distinctions that users currently understand and that
are useful, When Ihe Ul classes are carefully de-
fined, these distinctions make It easy for users fo
Il2arm the rode of an object in perorming thelr 1asks
and to predict how an abject will behave.

In Chapter 2, we saw that most objects—excepi
the most basic ones—are composed of and may
confain other objects, For example, a spreadsheal
is an object composed of celis, and cslls ame objects
that may contain text, mathematical formulas, video,
and =o forth. Breaking down such objedcts inte the

objacts fram which they are composead is decompo-
sitien. The depth to which object decomposition
should be supported in the Interface depends en-
tirely on what a user finds useful in performing a
particular task. A user writing a report, for example,
probably would not be intaresied in dealing with ob-
jects smaller than characters, so In this tagk chas-
acters would be elemental objects. However, a user
creating or editing a character font might need to
manipuiate Individual pixels or strokes. In this task,
characters would be composed of pixels or strokes,
and therafore a charecter would not be an elemen-
tal object

WHY oou?

An OOUI lessans the need for users to be aware of
the programming providing the funcfions {hey em-
ploy. Instead, they can concentrate on locating the
objects nesded to-accomplish their task and on par-
forming actions on those objects. The aspects of
startiriq and running programs are hidden to all but
thosa users who wanl to be awars of them. A user
should need to know only which chjects are required
fo compiefe the task and how fo use those objects
to achieve thé desired resull [2). The learning
process is further simplified because the user has
1o deal with enly one process, viewing an object, as
opposed to starting an application, then finding and
opening or creating a file. Although this is the main
objactive of OOUI, we are a few years away from
completely achieving the goal. However, & computar
is a togl, and as with any other fool, it has to be
leamed to be used effectively. Therefore, whan you
can help a usar by simplitying the process of leam-
ing fo use a fool, you should do so.

' However, currantly wi are in a trRnsitioh phase bebween
GEUI and QO

By bringing together, in the mind, various combinations of known objects or

situations, we are using inventive imagination to develop new products, systems,
or designs. It is not necessary 1o visualize absolutely new objects or to go beyond
the bounds of our own experience. Inventive imagination can take place simply by
putting together known materials (objects) in a new way, Therefore, a developer
might conceive new software by using inventive imagination to combine objects
already in his or her mind to satisfy user needs and requirements. As an example
of this, see the Real-World lssues on Agenda “Toward an Object-Onented User
Interface.”



28B4 PuRT FOUR: OBJECT-ORIENTED DESIGN

Is creative ability bom in an individual or can someone develop this ability?
Both parts of this question can be answered in the affirmative. Certainly, some peo-
ple are born with more creativity than others, just as certain people are born with
betier skills (athletes, artisis, efc) in some areas, than others; Just as it 15 possible
to develop mental and physical skills through study and practice, it is possible to
develop and improve one’s creative ability.

To view user interface design as 4 creative process, it is necessary (o understand
what the creative process really involves. The creative process, in part, 15 a com-
bination of the following:

I. A curious and imaginative mind.

2. A broad background and fundamental knowledge of existing tools and methods.

3. An enthusiastic desire to do a complete and thorough job of discovering solu-
tions once a problem has been defined.

4. Being able to deal with uncertainty and ambiguity and to defer prematute closure.

One aid to development or restoration of curiosity is to train yourself to be
observant. You must be observant of any software that you are using. You must ask
how or from what objects or components the user interface 15 made, how satisfied
the users are with the UL, why it was designed using particular controls, why and
how it was developed as it was, and how much it costs. These observations lead
thie creative thinker to see ways in which software can be improved or 1o devise a
better component to take its place.

12.3 DESIGNING VIEW LAYER CLASSES

An implicit benefit of three-layer architecture and separation of the view layer
from the business and access layers is that, when vou design the Ul objects, you
have to think more explicitly about distinctions between objects that are useful to
users. A distinguishing characteristic of view layer objects or interface objects is
that they are (he only exposed objects of an application with which users can in-
teract. After all, view laver classes or interface objects are objects that represent
the set of operations in the business that users must perform to complete their
tasks, ideally in a way they find natural, easy to remember. and useful. Any ob-
jects that have direct contact with the outside world are visible in interface objects.
whereas business or access objects are more independent of their environment.

As explained in Chapter 4, the view layer objects are responsible for two major
aspects of the applications:

1. Input—responding te user interaction. The user interface must be designed 1o
translate an action by the user, such as clicking on a button or selecting from a
menu, into an appropriate response. That response may be 1o open or close
another interface or to send a message down into the business layer to start
some business process. Remember, the business logic does not exist here, just
the knowledge of which message to send 1o which business object.

2. Quipwi—displaying or printing business objects. This layer must paint the best
picture possible of the business objects for the user. In one interface, this may




CHAPTER 12; VIEW LAYER: DESIGNING INTEREACE OBUECTS 285

mean entry fields and list boxes to display an order and its items. In another, it
may be a graph of the total price of a customer’s orders.

The process of designing view layer classes is divided into four major activities:

L. The macro level UT design process—identifying view laver objects. This activ-
ity, for the most part, takes place during the analysis phase of system develop-
ment. The main objective of the macro process is g;_j_\mmwh
act with human actors by analyzing the use cases developed in the analysis
phase. As described in previous chapiers, each use case involves actors and the
task they want the system to do. These use cases should capture a complete,
unambiguous, and consistent picture of the interface requirements of the §ys-
tem. After all, use cases concentrale on describing what the system does rather
than how it does it by separating the behavior of a system from the way it is
implemented, which requires viewing the system from the user’s perspective
rather than that of the machine. However, in this phase, we also need to address
the issue of how the interface must be implemented. Sequence or collaboration
diagrams can help by allowing us to zoom in on the actor-system interaction
and extrapolate interface classes that interact with human actors; thus, assisting
us mn identifying and gathering the requirements for the view laver objects and
designing them.

Micre level Ul design activities:

2.1 Designing the view layer objects by applving design axioms and corollar-
ies. In designing view layer objects, decide how to use and extend the com-
ponents so they best support application-specific functions and provide the
most usable interface.

2.1 Prototyping the view laver interface: After defining a design model, prepare
a prototype of some of the basic aspects of the design, Prototyping is par-
ticularly useful early in the design process.

X Testing usability and user satisfaction, *"We must test the application to make
sure it meets the audience requirements. To ensure user satisfaction, we must
measure user satisfaction and its usability along the way as the UI design takes
torm. Usability experts agree that usability evaluation should be part of the de-
velopment process rather than a post-mortem or forensic activity. Despite the
importance of usability and user satisfaction, many system developers still fail
io pay adequate attention to usability, focusing primarily on functionality™ [4,
pp. 61-62]. In too many cases, usability still is not given adequate considera-
tion. Adoption of usability in the later stages of the life cycle will not produce
sufficient improvement of overall quality. We will study how to develop user
satisfaction and usability in Chapter 14.

4. Refining and iterating the design.

pd

i2.4 MACRO-LEVEL PROCESS: IDENTIFYING VIEW CLASSES BY
ANALYZING USE CASES

The interface object handles all communication with the actor but processes no
business rules or object storage activities. In essence, the interface object will



286 FART FOUR: OBJECT-ORIENTED DESIGN

operate as a buffer between the user and the rest of the business objects [3]. The
interface object is responsible for behavior related directly to the tasks involving
contact with actors. Interface objects are unlike business objects, which lie inside
the business layer and involve no interaction with actors. For example, computing
employee overtime is an example of a business object service. However, the data
entry for the employee overtime is an interface object.

lacobson, Ericsson, and Jacobson explain that an interface object can partici-
pate in several use cases. Often, the interface object has a coordinating responsi-
bility in the process, at least responsibility for those tasks that come into direct
contact with the user. As explained in earlier chapters, the first step here is to be-
gin with the use cases, which help us to understand the users’ objectives and tasks.
Different users have different needs; for example, advanced, or “power,” users
want efficiency whereas other users may want ease of use. Similarly, users with
disabilities or in an international market have still different requirements, The chal-
lenge is to provide efficiency for advanced users without introducing complexity
for less-experienced users, However, developing use cases for advanced as well as
less-experienced users might lead you to solutions such as shortcuts to support
more advanced users.

The view layer macro process consists of two steps:

1. For every class identified (see Figure 12-1), determine if the class interacts with
a human actor. If so, perform the following: otherwise, move to the next class.
L1 Identify the view (interface) objects for the class. Zoom in on the view objects

by utilizing sequence or collaboration diagrams to identify the interface
objects; their responsibilities, and the requirements for this class.

1.2 Define the relationships amang the view (interface) objects. The interface
objects, like access classes, for the most part, are associated with the busi-
ness classes. Therefore, you can let business classes guide you in defining
the relationships among the view classes. Furthermore, the same rule as
applies in identifying relationships among business class objects also applies
among interface objects (see Chapter 8).

2. herate and refine;

The advantage of utilizing use cases in identifying and designing view layer ob-
jects is that the focus centers on the user, and including users as part of the plan-
ning and design is the best way to ensure accommodating them. Once the inter-
face objects have been identified, we must identify the basic components or objects
used in the user tasks and the behavior and the charactenstics that differentiate
each kind of object, including the relationships of interface objects to each other
and to the user. Also identify the actions performed, the objects 1o which they ap-
ply. and the state information or attributes that each object in the task must pre-
serve, display. and allow to be edited, Figure 12-2 shows the relationships among
business, access, and view layer objects. The relationships among view class and
business class objects is opposite of that among business class and access class ob-
jects, After all, the interface object handles all communication with the user but
does not process any business rules; that will be done by the business objects.




CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE OBUECT: 287

J

The class smernets with a
humnn actog

Zoom in by utilizing
‘SEQuence or The class doesn’t inleract
collaboration with a humun actor

din 1
S
MNext cliss

Refine and iterais

Definie the
relatonships among
the view objects

iy ris
Crone

FIGURE 12-1
The macro-level design process.

Effective interface design is more than just following a set of rules. It also in-
volves early planning of the interface and continued work through the software de-
velopment process. The process of designing the user interface involves clarifying
the specific needs of the application, identifying the use cases and interfice objects,
and then devising a design that best meets users’ needs, The remainder of this
chapter describes the micro-level UT design process and the issues involved.

12.5 MICRO-LEVEL PROCESS

To be successtul, the design of the view layer objects must be user driven or user
centered. A user-centered interface replicates the user’s view of doing things by
providing the outcomes users expect for any action. For example, if the goal of an



288 rarT FOUR: OBJECT-ORIENTED DESIGN

1

View objecis

Jn

Business objeots

L

Tk
Access objects

FIGURE 12-2

The relalionships among business, access, and view objects. In some sltuatlons the view class
can bacome a direct aggregate of the access object, as when designing a Wab interface that
must communicate with an application/Web-server through access objects. See also Figure
11-18.

application is to automate what was a paper process, then the tool should be sim-
ple and natural, Design your application so it allows users to apply their previous
real-world knowledge of the paper process to the application interface. Your de-
sign then can support this work environment and goal, After all, the main goal of
view layer design is to address users’ needs.

The following is the process of designing view (interface) objects:

1. For every interface object identified in the macro Ul design process (see Fig-
ure 12-3), apply micro-level Ul design rules and corollaries to develop the UL
Apply design rules and GUI guidelines to design the Ul for the interface ob-
jects identified.

2. lterate and refine.

In the following sections, we look at the three Ul design rules based on the de-
sign axioms and corollaries of Chapter 9.

12.5.1 Ul Design Rule 1. Making the Interface Simple [Application
of Corollary 2)

First and foremaost, your user interface should be so simple that users are unaware
of the tools and mechanisms that make the application work. As applications be-
come more complicated, users must have an even simpler interface, so they can
learn new applications more easily. Today's car engines are 50 complex that they
have onboard computers and sophisticated electronics. However, the driver inter-
face remains simple: The driver needs only a steering wheel and the gas and brake
pedals to operate a car. Drivers do not have to understand what is under the hood
or even be aware of it to drive a car, because the driver interface remains simple,
The Ul should provide the same simplicity for users.




CHAPTER 12: VIEW LAYER: DESIGHING INTERFACE OBJECTS 289

Apply micro-level U
design rules and GUI
guidelines 1o cach
interface object
identified to develop
the LI

Mext intérface objects
Refine and flerae

FIGURE 12-3 _
The micro-leweal dasm process,

This rule is an application of Corollary 2 (single purpose, see Chapter 9) in Ul
design. Here, it means that each UI class must have a single, clearly defined pur-
pose. Similarly, when you document, you should be able easily to describe the pur-
pose of the Ul class with a few sentences. Furthermore, we have all heard the
acronym KISS (Keep It Simple, Stupid). Maria Capucciati, an expert in user in-
terface design and standards, has a better acronym for KISS—Keep It Simple and
Straightforward. She says that, once you know what fields or choices to include in
your application, ask yourself if they really are necessary. Labels, static text, check
baxes, group boxes, and option buttons often clutter the interface and take up twice
the room mandated by the actual data. If a user cannot sit before one of your
screens and figure out what to do without asking a multitude of questions, your in-
terface is not simple enough; ideally, in the final product, all the problems will
have been solved.

A number of additional factors may affect the design of your application. Fer
example, deadlines may require you to deliver a product to market with a minimal
design process, or comparative evaluations may force you to consider additional
features. Remember that additional features and shortcuts can affect the product,
There is no simple equation to determine when a design trade-off is appropriate.
S0, in evaluating the impact, consider the following:

* Every additional feature potentially affects the performance, complexity, stabil-
ity, maintenance, and support costs of an application.

* It is harder to fix a design problem after the release of a product because users
may adapt, or even become dependent on, a peculiarity in the design.

* Simplicity is different from being simplistic. Making something simple to use
often requires a good deal of work-and code.

* Features implemented by a small extension in the application code do not nec-
essarily have a proportional effect in a user interface, For example, if the primary



290 PuRT FOUR: OBJECT-DRIENTED DESIGN

task is selecting a single object, extending it to support selection of multiple
objects could make the frequent, simple task more difficult to carry out. De-
signing & Ul based on its purpose will be explained in the next section.

12.5.2 Ul Design Rule 2. Making the Interface Transparent and
Natural (Application of Corollary 4)

The user interface should be so intuitive and natural that users can anticipate what
to do next by applying their previous knowledge of doing tasks without a com-
puter. An application, therefore, should reflect a real-world model of the users’
goals and the tasks necessary to reach those goals,

The second Ul rule is an application of Corollary 4 (strong mapping) in Ul de-
sign. Here, this corollary implies that there should be strong mapping between the
user's view of doing things and Ul classes. A metaphor, or analogy, relates two
otherwise unrelated things by using one to denote the other (such as a question
mark to label a Help button), For example, writers use metaphors to help readers
understand a conceptual image or model of the subject. This principle also applies
to UT design. Using metaphors is a way to develop the users’ conceptual model of
an application, Familiar metaphors can assist the users to transfer their previous
knowledge from their work environment to the application interface and create a
strong mapping between the users’ view and the Ul objects. You must be careful
in choosing a metaphor to make sure it meets the expectations users have because
of their real-world experience. Often an application design is based on a single
metaphor. For example, billing, insurance. inventory, and banking applications can
represent forms that are visually equivalent to the paper forms users are accus-
tomed io seeing.

The UT should not make users focus on the mechanics of an application, A good
user interface does not bother the user with mechanics. Computers should be
viewed as a tool for completing tasks, as a car is a ool for getting from one place
to another. Users should not have to know how an application works 1o get a task
done, as they should not have to know how a car engine works to get from one
place to another. A goal of user interface design is to make the user interaction
with the computer as simple and natural as possible.

12.5.3 Ul Design Rule 3. Allowing Users to Be in Control of the
Software (Application of Corollary 1)

The third UI design rule states that the users always should feel in control of the
software, rather than feeling controlled by the software. This concept has a num-
ber of implications. The first implication is the operational assumption that actions
are started by the user rather than the computer or software, that the user plays &an
active tather than reactive role. Task automation and constraints still are possible,
but you should implement them in a balanced way that allows the user freedom of
choice,

The second implication is that users, because of their widely varying skills
and preferences, must be able to customize aspects of the interface. The system
software provides user access to many of these aspects. The software should re-




CHAPTER 12; VIEW LAYER: DESIGNING INTERFACE OBJECTS 291

flect user settings for different system properties such as color, fonts, or other
options,

The final implication is that the software should be as interactive and respon-
sive as possible. Avoid modes whenever possible. A mode is a state that excludes

general interaction or gtherwise limifs. the user 1o specific interactions. Users are
in control when they are able to switch from one activity to another, change their

minds easily, and stop activities they no longer want to continue. Users should be
able to cancel or suspend any time-consuming activity without causing disastrous
results. There are situations in which modes are useful; for example, selecting a
file name before opening it. The dialog that gets me the file name must be modal
(more on this later in the section).

This rule is a subtle but important application of Corollary 1 (uncoupled design
with less information content) in U design. It implies that the UT object should
represent, al most, one business object, perhaps just some services of that business
object. The main idea here is to avoid creating a single Ul class for several busi-
ness objects. since it makes the Ul less flexible and forces the user to perform tasks
n a monelithic way. Some of the ways 1o put users in control are these:

* Make the interface forgiving.
= Make the interface visual.

= Provide immediate feedback.
» Avoid modes.

= Make the interface consistent.

12.5.3.1 Make the Interface Forgiving The users’ actions should be easily re-
versed. When users are in control, they should be able to explore without fear of
causing an imeversible mistake, Users like to explore an interface and often learn
by trial and error. They should be able to back up or undo previous actions. An
effective interface allows for interactive discovery. Actions that are destructive and
miay cause the unexpected loss of data should reguire a confirmation or, better,
should be reversible or recoverable, Even within the best designed interface, users
can make mistakes. These mistakes can be both physical (accidentally pointing to
the wrong command or data) and mental (making a wrong decision about which
command or data to select). An effective design avoids situations that are likely to
result in errors. It also accommodates potential user errors and makes it easy for
the user to recover. Users feel mare comfortable with a system when their mis-
takes do not cause serious or immeversible results.

12.53.2 Make the Interface Visual Design the interface so users can see, rather
than recall, how to proceed. Whenever possible, provide users a list of items from
which to choose, instead of making them remember valid choices.

12.5.3.3 Provide Immediate Feedback Users should never press a key or select
an action without receiving immediate visual or audible feedback or both, When
the cursor is on a choice, for example, the color, emphasis, and selection indica-
tors show users they can select that choice. After users select a choice, the color,
emphasis, and selection indicators change 1o show users their choice is selected.



292 PaRT FOUR: OBJECT-ORIENTED DESIGN

12.5.3.4 Avoid Modes Useérs are in a mode whenever they must cancel what
they are doing before they can do something else or when the same action has dif-
ferent results in different situations. Modes force users to focus on the way an ap-
plication works, instead of on the task they want to complete. Modes. therefore,
interfere with usérs” ability 1o use their conceptual model of how the application
should work. It is not always possible to design a modeless application; however,
you should make modes an exception and limit them to the smallest possible
scope. Whenever users are in a mode, you should make it obvious by providing
good visual cues. The method for ending the mode should be easy to learn and re-
member. These are some of the modes that can be used in the user interface:

« Modal dialog. Sometimes an application needs information to continue, such as
the name of a file into which users want to save something. When an error occurs,
users may be required to pérform an action before they continue their task. The
visual cue for modal dialog is a color boundary for the dialog box that contains
the modal dialog.

s Spring-loaded modes. Users are in a spring-loaded mode when they continually
must take some action (o remain in that mode; for example, dragging the mouse
with a mouse button pressed to highlight a portion of text. In this case. the vi-
sual cue for the mode is the highlighting, and the text should stay highlighted
for other operations such as Cut and Paste.

s Tool-driven modes. 1f you are in a drawing application, you may be able to
choose a tool, such as a pencil or a paintbrush, for drawing. After you select the
tool, the mouse pointer shape changes 1o match the selected ool You are in 2
mode, but you are not likely o be confuséd because the changed mouse pointer
is a constant reminder you are in a mode.

12.5.3.5 Make the Interface Consistent Consistency is one way to develop and
reinfarce the user's conceptual model of applications and give the user the feeling
that he or she is in control, since the user can predict the behavior of the system.
User interfaces should be consistent throughout the applications; for example,
using a consistent user interface for the inventory application.

12.6 THE PURPOSE OF A VIEW LAYER INTERFACE

Your user interface can employ oné or more windows. Each window should serve
a clear, specific purpose. Windows commonly are used for the following purposes:

o Forms and data entry windows, Data entry windows provide dccess to data that
users can retrieve, display, and change in the application.

 Dialog boxes, Dialog boxes display status information or ask users o supply
information or make a decision before continuing with a task. A typical feature
of a dialog box is the OK button that a user clicks with a mouse to process the
selected choices,

« Application windows (main windows). An application window is & container of
application objects or icons. In other words, it contains an entire application with
which users can inferuct



CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE OBJECTS 203

You should be able to explain the purpose of a window in the application in a
single sentence. If a window serves multiple purposes, consider creating a sepa-
rate one for each,

12.6.1 Guidelines for Designing Forms and Data Entry Windows
When designing a data entry window or forms (or Web forms), identify the infor-
mation you want to display or change. Consider the following issues:

* In general, what kind of information will users work with and why? For exam-
ple, a user might want to change inventory information, enter orders, or main-
tain prices for stock items.

* Do users need access (o all the information in a table or just some information?
When working with a portion of the information in a table, use a query that se-
lects the rows and columns users want

* In what order do users want rows to appear? For example, users might want to
change inventory information stored alphabetically, chronologically, or by in-
ventory number. You have to provide a mechanism for the user so that the order
can be modified.

Next, identify the tasks that users need to work with data on the form or data
entry window. Typical data entry tasks include the following:

* Navigating rows in a table, such as moving forward and backward, and going to
the first and last record.

* Adding and deleting rows.

+ Changing data in rows.

* Saving and abandoning changes.

You can provide menus, push buttons, and speed bar buttons that users choose
to initiate tasks. You can put controls anywhere on a window. However, the layout
you choose determines how successfully users can enter data using the form. Here
are some guidelines to consider:

* You can use an existing paper form, such as a printed invoice, as the starting
point for your design,

* If the printed form contains too much information to fit on a screen, consider
using a main window with optional smaller windows that users can display on
demand or using a window with multiple pages (see Figure 12-4). Users typi-
cally are more prodictive when a screen is not cluttered.

* Users scan a screen in the same way they read a page of a book, from left to
right and top to bottom. In general, put required or frequently entered informa-
tion toward the top and left side of the form, entering optional or seldom-entered
information toward the bottom and right side. For example, on a window for en-
tering inventory data, the inventory j_q@Ep:r and item name might best be placed
in the upper-lefi comer. while the signature could appear lower and to the right
(see Figure 12-5), =

* When information is positioned vertically, align fields at their left edges (in West-
emn countrieg), This usually makes it easier for the user to scan the information,




FIGURE 12-4
An example ol a mmmmﬂmminhwmmm

Text labels ysually.are left aligned and placed above or 1o the left of the areas to
which they apply. When placing text labels to the left of text box controls, align
the height of the text with text displayed in the text box (see Figure 12-6).
» When entering data. users expect to type information from left to right and top
to bottom, as if they were using a typewriter (usually the Tab key moves the fo-
cus from gne control to another). Amrange controls in the sequence users expect
o enter data However, you may want the users to be able to jump from one
group of controls to the beginning of another group, skipping over individual
controls. For example, when entering address information, users expeet to enter
the Address, City, State, and Zip Code (see Figure 12-7).
» Put similar or related information together, and use visual effects to emphasize
the grouping. For example, you might want to put a company’s billing and ship-
ping address information in separate groups. To emphasize a group, you can en-
close its controls in a distingt visual area using a rectangle, lines, alignment, or
colors (see Figure 12-4).




——

'CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE OBJECTS 295

Frequently

entered

mionmation

FIGURE 12-5
Required should be put toward fhe lop and lstt side of the form, entering optional or
-—-'-'-_-J__.. "

FIGURE 12-8 §
Place text labels o the lsft of taxt box controls, align the height of the text with text displayed in
ey : 5 : : ;
Possible locations for texd
Labels




296 PART FOUR: OBJECT-ORIENTED DESIGN

FIGURE 12-7 _
Arrange controls [eft to right and top to botom.

The Real-World Issues on Agenda “"Future of the GUI Landscape” examines win-
dow presentations for the future.

12.6.2 Guidelines for Designing Dialog Boxes and Error Messages
A dialog box provides an exchange of information or a dialog between the user
and ma-appuaaﬁmmmmmmiwi
item (including pop-up ot cascading menu items) or a command button, define
Title text to be the name of the associated commiand from the menu item or com-
mand button. However, do not include ellipses and avoid including the command’s
menu title unless necessary fo compose a reasonable title for the dialog box. For
example, for a Print command on the File Menu, define the dialog box window's
title text as Print, Not Print . . .. or File Print.
If the dialog box is for an emor message, use the following guidelines:

* Your error miessage should be positive: Forexample instead of displaying “You
have typed an illegal date format,” display the message “Enter date format
mmidd/yyyy.? .

* Your error message should be constructive.For example, avoid messages such
25 “You should know better! Uise the OK button™; instead display “Press the
Undo button and try again" The users should feel as if they are controlling the
system rather than the software is controlling them.

% Mpte: Sometimes, an innocent design decision (such is representing date ad mm/ddiyy) can have im-
mense implications, The case in point is the Y2K (year 2000) problem, where for many computer and
software systemis, the vear 2000 will bring a host of problems related o software programs that were
designed 1o record the year uging only the last two digits,




CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE OBJECTs 297

Real-World Issues on Agenda

FUTURE OF THE GUI LANDSCAPE: 3-D OR FLATLAND?

Stephanie Wilkinson

Not so long ago, wsing icons, windows and drop-
down menus to navigate applications was a radical
idea for corporate systems bullders. Today, that GUI
is all but ublquitous, But what will the GUI of tomor-
row look lka?

It the visionarles had thelr way, corporate PG
usars would imeract with their computars in a whally
natusalistic way. They'd never need help screens to
explain an icon or find 2 file or launch an applica-
tion, Everything would appear “virtually real” Every-
thing would be three-dimansional.

“The GUI interface of today is a vast two-dimen-
sional flatland" says John Latla, president of 41h
Wave Inc., an Alexandria, Va_, research firm. “3-D |s
a portal to the next generation

3-D isn't jus! for games anymore. Corporate IT
deparimenis are awakening to the power of dala vi-
sualization, next-ganaration GlUis and of cotirse, the
lure of the Web. Here's the business justification for
going 3-0:

Because 3-D environmenis are more ke real
life, workers can parform tasks morg easily and with
less training. 3-0 interdaces trade cognitive effort for
simple percaption: instead of having to mull over
how 1o attach a document to a memo using com-
mands of icons, the user chooses a stapler on the
deskiop,

More information can be presented—and un-
derstogd—in-a 3-D fermat than in 2-D. Example: An
80-page organizational chart can be represented in
3-0b on a single screen. The hisrarchical and lateral
refationships betwsen depariments and employees
are also instantly apparant.

3-0 ratchels up the powsr of data mining a- full
natch. By using 3-0, commonplace data matrix—
national widget sales In seven regions over the lasi
three quarters, for instance—can be transformed
into a tullcolor, animated map that aliews hidden
trerids to amarge.

“The average office warker has to deal with vast
amounts of information, most of which is not wall-
organized," says Robertson. A 3-D interiace not only
allows users o se& more on screan al once, "they
also see the struciure of that information.” he notes.
For instance, the contents of a user's hard drive
could appear In 3-0 spacs, allowing the wser 1o lo-
cate files and launch applications by zeoming in
on—aor “foregrounding™—a particular part of the
SCENe.

Ot course, analysts such as Lata say thers is
no guarantee thal what comes from Microsolt will
become the next GU| standard. Xerox PARC itsalf
Is working on a 3-D interface technology that will
eventually resull in a commercial version called
WabForager. And Intet Corp., which has a vision of
how the task of graphics processing should take
place inside the box, is readying its own =at of
APls:

So there's no need to worry quite yet about
choosing the next corporate GUI and making the
transition lo 3-D on every desktop. Says Latta:
“That's probably sfill a few years away”

By Slephario Wilkinson, PC Week, Saplembar 23, 1996, Vol
13, Number 38,

Your error message should be brief and meaningful. For example, “ERROR: type
check Offending Command . . " Although this message might be useful for the
programmer during the testing and debugging phase, it is not a useful message

for the user of your system.

Orient the controls in the dialog box in the direction people read. This usually
means lefl to right and top to bottom. Locate the primary field with which the
user interacts as close o the upper-left corer as possible. Follow similar guide-
lines for orienting controls within a group in the dialog box.




298 FAAT FOUR: OBJECT-ORIENTED DESIGN

Lay out the major command buttons either stacked along the upper-right border of
the dialog box or lined up across the bottom of the dialog box (see Figure 12-8).
Positioning buttons on the left border is very popular in Web interfaces (see Fig-
ure 12-9). Position the most important button, typically the default command, as
the first button in the set. If you use the OK and Cancel buttons, group them to-
gether. If you include a Help command button, make it the last button in the set.

You can use other arrangements if there is a compelling reason, such as a nat-
ural mapping relationship. For example, it makes sense to place buttons labeled
North, South, East, and West in a compasslike layout. Similarly, a command but-
ton that modifies or provides direct support for another control may be grouped or
placed next to that control. However, avoid making this button the default button
because the user will expect the default button 1o be in the conventional location.
Once again, let consistenicy guide you through the design.

For easy readability, make buttons a consistent length. Consistent visual and op-
erational styles will allow users to transfer their knowledge and skills more easily.
However, if maintaining this consistency greatly expands the space required by 4
set of buttons, it may be reasonable 1o have one button larger than the rest. Place-
ment af command buttons (or other controls) within a tabbed page implies the ap-
plication of only the transactions on that page. If command buttons are placed
within the window but not on the tabbed page. they apply to the entire window
(see Figure 12-4),

FIGURE 12-8 _ _ _
Arrange the command buttens either aiong the upper-right bordar of the form. or dialog box or lined
up-acrass the bottom.

Default Button




CHAPTER 12 VIEW LAYER: DESIGNING INTEREACE OBJECTS 299

d *%0)

SISSIUISH

danilien | Smaicaling | B & Eoonovecy | ot Comene st | Comgnion | Lammunpe: Sy § Edeation
b Einurecesl i oy | o Sobduas |ty | Bedoal B P!

e | 30t Hiee | ot Pesy nod infpomaton | O Bupemerias | Py Priig
Bk | Cane apodanters [Drectry | (8res Busay i Congagt Uy | T af Ten

Cozpnghd © 1506 The M Grass18 Companiss, v

FIGURE 12-9
Positioning buttons an the left is popular in Web inferfaces.

12.6.4 Guidelines for Designing Application Windows

A typical application window consists of a frame (or border) that defines its extent
and a title bar that identifies what is being viewed in the window, If the viewable con-
tent of the window exceeds the current size of the window, scroll bars are used. The
window also can include other components like menu bars, toolbars, and status bars.

An application window usually contains common drop-down menus. While a
command drop-down menu is not required for all applications, apply these guide-
lines when including such menus in your software’s interface:

* The File menu. The File menu provides an interface for the primary operations
that apply to a file. Your application should include commands such as Open,
Save, Save As . . .. and Print. Place the Exit command at the bottom of the File
menu preceded by a menu separator. When the user chooses the Exit command,
close any open windows and files and stop any further processing. If the object
remains active even when its window is closed, such as a folder or printer. then
include the Close command instead of Exit.

* The Edit menu. Include general purpose editing commands on the Edit menu,
These commands include the Cut, Copy, and Paste commands. Depending on
your application, you might include the Undo, Find, and Delete commands,



300 FoRT FOUR: OBJECT-ORIENTED DESIGN

» The View menu and other command menus. Commands on the View menu should
change the user’s view of data in the window. On this menu, include commands
that affect the view and not the data itself; for example, Zoom or Outling. Also
include commands for controlling the display of particular interface elements n
the view; for example, Show Ruler. These commands should be placed on the
pop-up menu of the window,

* The Window menu. Use the Window menu in multiple document, interface-style
applications for managing the windows within the main workspace.

* The Help menu. The Help menu contains commands that provide access to Help
information, Include a Help Topics command. This command provides access 1o
the Help Topics browser, which displays topics included in the application's
Help file. Alternatively, provide individual commands that access specific pages
of the Help Topics browser, such as Contents, Index. and Find Topic. Also in-
clude other user assistance commands or wizards that can guide the users and
show them how to use the system. It is conventional to provide access (o copy-
right and version information for the application, which should be included in
the About Application name command on this menu. Other command menus can
be added, depending on your application’s needs.

« Toolbars and status bars. Like menu bars, toolbars and status bars are special
interface constructs for managing sets of controls. A toolbar is a panel that
contains a set of controls, as shown in Figure 12-10, designed to provide
quick access to specific commands or options. Some specialized toolbars are
called ribbons, toolboxes, and palettes. A status bar, shown in Figure 12-11,
is @ special area within a window, typically at the bottom, that displays infor-
mation such as the current state of what is being viewed in the window or any
other contextual information, such as keyboard state: You also can use the sta-
tus bar to provide descriptive messages about a selected menu or toolbar but-
ton, and it provides excellent feedback to the users. Like a toolbar, a status
bar can contain controls; however, typically, it includes read-only or nonin-
teractive information.

12.6.5 Guidelines for Using Colors

For all objects on a window, you can use colors to add visual appeal to the form.
However, consider the hardware. Your Windows-based application may end up be-
ing run on just about any sort of monitor. Do not choose colors exclusive to a par-
ticular configuration, unless you know your application will be run on that specific
hardware. In fact, do not dismiss the possibility that a user will run your applica-
tion with nio calor support at.all.

Figure out a color scheme. If you use multiple colors, do not mix them indis-
criminately. Nothing looks worse than a circus interface [1]. Do you have a geod
color sense? If you cannot make everyday color decisions, ask an artist or a de-
signer to review your color scheme. Use color as a highlight to get attention. If
there is one field you want the user to fill first, color it in such a way that it will
starid out from the other fields.



CHAPTER 12: VIEW LAYER: DESIGNING INTEREACE oRiECTs 301

Toolbar.

FIGURE 12-11
Status bar,

How long will users be sitting in front of your application? If it is eight hours
a day, this is not the place for screaming red text on a sunny yellow background.
Use common sense and consideration. Go for soothing, cool, and neutral colors
such as blues or other neutral colors. Text must be readable at all times: black is
the standard color, but blue and dark gray also can work.

Associate meanings to the colors of your interface, For example, use blue for
all the uneditable fields, green to indicate fields that will update dynamically, and
red to indicate error conditions. If you choose to do this, ensure color consistency
from screen to screen and make sure the users know what these various colors indi-
cate. Do not use light gray for any text except to indicate an unavailable condition.

Remember that a centain percentage of the population is color blind. Do not let
color be your only visual cue. Use an animated button, a sound package, or a mes-
sage box. Finally, color will not hide poor functionality.

The following guidelines can help you use colors in the most effective manner:

* You can use identical or similar colors to indicate related information. For exam-
ple. savings account fields might appear in one color, Use different or conirasting
colors to distinguish groups of information from each other. For example, check-
ing and savings accounts could appear in different colors,

* For an object background, use a contrasting but complementary color. For exam-
ple, in an entry field, make Sure that the background color contrasts with the data
color 50 that the user can easily read data in the field,

* You can use bright colors to call attention to certain elements on the screen, and
you can use dim colors to make other elements less noticeable. For example, you
might want to display the required field in a brighter color than optional fields,

* Use colors consistently within each window and among all windows in your
application. For example, the colors for push buttons sFould be the same
throughout.

* Using too many colors can be visually distracting and will make your applica-
tion less interesting. o s

* Allow the user to modify the color configuration of your application.




302 psAT FOUR: OBJECT-ORIENTED DESIGN

12.6.6 Guidelines for Using Fonts

Consistency is the key 10 an effective use of fonts and color in your interface. Most
commercial applications use |2-point System font for menus and 10-point System
font in dialog boxes. These are fairly safe choices for most purposes, If System is
too boring for you, any other sans serif font is easy 1o read {such as Arial or Hel-
vetica). The most practical serif font is Times New Roman.

Avoid Courier unless you deliberately want something to look like it came from
a typewriter. Other fonts may be appropriate for word processing or desktop pub-
lishing purposes but do not really belong on Windows-based application screens.
Avoid using all uppercase text in labels or any other text on your screens: It s
harder to read and feels like you are shouting at the users. The only exception is
the OK command button. Also avoid mixing more than two fonts, point sizes, o
styles, so your screens have a cohesive look. The following guidelines can help
you use fonts to best convey information:

* Use 1:::;1'r|.rr1a::-n.I_!,F-r installed fonts, not specialized fonts that users might not have on
their machines.

+ Use bold for control labels, so they will remain legible when the object is

imm:

= Lsge t'nnts consistently within each form and among all forms in your applica-
uﬂnwmx controls should be the same through-
out. Consistency is reassuring to users, and psychologically makes users feel in
control.

* Using too many font styles, sizes, and colors can be visually distracting and
"should be avoided. Too many Tont styles are confusing and make users feel less
in control.

* To emphasize text, increase its font size relative to other words on the form or
use a contrasting color. Avoid underlines; they can be confusing and difficult to
read on the screen.

12.7 PROTOTYPING THE USER INTERFACE

Rapid prototyping encourages the incremental development approach, "grow,
don't build” Prototyping involves a number of iterations. Through each iteration,
we add a little more to the application, and as we understand the problem a little
better, we can make more improvements. This, in turn, makes the debugging task
easier.

It is highly desirable to prepare a prototype of the user interface during the
analysis to better understand the system requirements. This can be done with most
CASE tools,” operational software using visual prototyping, or normal develop-
ment tools. Visual and rapid prototyping is a valuable asset in many ways. First, it
provides an effective tool for communicating the design. Second, it can help you
define task flow and better visualize the design. Finally, it provides a low-cost ve-

¥ Systermn Architect Screen Painter can be used 1o prototype Windows screens and menos,




CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE cBJECTS 303

hicle for getting user input on a design. This is particularly useful early in the de-
sign process. ' '
Creating a user interface generally consists of three steps (see Figure 12-12):
1. Create the user interface objects (such as buttons, data entry fields).
2. Link or assign the appropriate behaviors or actions to these user interface ob-
jects and their events.
3. Test, debug, then add more by going back to step 1.

FIGURE 12-12 .
Prototyping user interface consists of three steps.

e
1o the user
interface controls
and their events




304 raET FOUR OBJEGT-ORIENTED DESIGN !

When vou complete the first prototype, meet with the user for an exchange of
ideas about how the system would go together. When approaching the vser, de-
scribe your prototype briefly. The main purpose should be to spark ideas. The user
should not feel that you are imposing or even suggesting this design. You shounld
be very positive about the user's system and wishes. Instead of using leading
phrases like “we could do this . . " or “It would be easier if we .. .” choose
phrases that give the user the feeling that he or she 1s in charge. Some example
phrases are [3]:

“Do you think that if we did . . . it would make it easier for the nsers?”
“Do usérs ever complain about . . .7 We could add , . . to make it easier.”

This cooperative approach usually results in more of your ideas being used in the end,

12.8 CASE STUDY: DESIGNING USER INTERFACE FOR THE
VIANET BANK ATM

Here we are designing a GUI interface for the ViaNet bank ATM for two reasons.
First, the ViaNet bank wants to deploy touch-screen kiosks instead of conven-
tional ATM machines (see Figure 12—13). The second reason is that, in the near |
future, the ViaNet wants to create “on-line banking,” where customers can be con- |
nected electronically to the bank via the Internet and conduct most of their bank-
ing needs. Therefore, ViaNet would like to experiment with GUI interface and
perhaps reuse some of the Ul désign concept for the on-line banking project (see
Figure 12-14),

!

FIGURE 12-13
Touwch screen kiosk.




CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE OBJECTS 305

FIGURE 12-14
An example of an on-line banking project,

12.8.1 THE VIEW LAYER MACRO PROCESS

The first step here is to identify the interface objects, their requirements, and their
responsibilities by applying the macro process to identify the view classes. When
creating user interfaces for a business model, it is important to remember the role
that view objects play in an application. The interface should be designed to give
the user access to the business process modeled in the business layer. It is not de-
signed to perform the business processing itself.

For every class identified (so far we have identified the following classes: Ac-
count, ATMMachine, Bank, BankDB. CheckingAccount, SavingsAccount, and
Transaction),

= Determine if the class interacts with a human actor. The only class that inter-
acts with a human actor is ATMMachine.

« Identifv the interface objects for the class. The next step is to go through the
sequence and collaboration diagrams to identify the interface objects, their re-
sponsibilities, and the requirements for this class.

In Chapter 6, we identified the scenarios or use cases for the ViaNet bank. The
various scenarios involve Checking Account, Savings Account, and general bank
Transaction {see Figures 6-9, 6-10, and 611 ). These use cases interact directly
with actors:

1. Bank transaction (see Figure 6-9).
2. Checking transaction history (see Figure 6=9).



306 e:RT FOUR: OBJECT-ORIENTED DESIGN

3. Deposit checking (see Figure 6-10).

4. Deposit savings (see Figure 6-11).

5. Savings transaction history (see Figure 6-9).

6. Withdraw checking (see Figure 6-10).

7. Withdraw savings (see Figure 6-11).

8. Valid/invalid PIN (see Figure 7-4, we have only a sequence diagram for this one).

Based on these use cases, we have identified eight view or interface objects. The
sequence and collaboration diagrams can be very useful here to help us better un-
derstand the responsibility of the view layers objects. To understand the responsi-
bilities of the interface objects, we need to look at the sequence and collaboration
diagrams and study the events that these interface objects must process or gener-
ate. Such events will tell us the makeup of these objects. For example, the PIN val-
idation user interface must be able to get a user’s PIN number and check whether
it is valid (see Figures 7—4 through 7-8).

Furthermore, by walking through the steps of sequence diagrams for each sce-
nario (such as withdraw, deposit, or an account information), you can determine
what view objects are necessary for the steps to take place. Therefore, the process
of creating sequence diagrams also assists in identifying view layer classes and
even understanding their relationships.

= Define relationships among the view (interface) objects. Next, we need to identify
the relationships among these view objects and their associated business classes,

So far, we have identified eight view classes:

AccountTransactionUl{for a bank transaction)
CheckingTransactionHistory Ul
SavingsTransactionHistoryUl
BankClientAccessUlI (for validating a PIN code}
DepositCheckingUl

DepaozitSavingsUl

WithdrawCheckingU1

WithdrawSavingsUI

The three transaction view objects— AccountTransactionUL, CheckingTransac-
tionHistoryUI and SavingsTransactionHistoryUI—basically do the same thing,
display the transaction history on either & checking or savings account. (To refresh
your memory, look at Figures 11-23 through 11-25 to see how we implemented
this for object storage and the access class). Therefore, we need only one view
class for displaying transaction history, and let us call it AccountTransactionUl

The AccountTransactionUl view class is the account transaction interface that
displays the transaction history for both savings and checking accounts. Figure
1215 depicts the relation among the AccountTransactionUl and the account class.
The relationship between the view class and business object is opposite of that be-
tween business class and access class. As said earlier, the interface object handles
all communication with the user but processes no business rules and lets that work




CHAFTER 12: VIEW LAYER: DESIGNING INTERFAGE OBJECTS 30T

One of the view class for the
scoouni class
AccountTransactonlfl
Business class
Acoount

FIGURE 12-15
Relation between the view class AccounfTransactiont! and Hs assoeiated business class {Ascount),

be done by the business objects themselves. In this case, the account class provides
the information to AccountTransactionUl for display to the users.

The BankClientAccessUI view class provides access control and PIN code val-
idation for a bank client (see Figure 12-16).

The four remaining view objects are the DepositCheckingUl view class (inter-
face for deposit tochecking accounts), DepositSavingsUT view class (interface for
deposit to savings accounts), WithdrawSavingsUI view class (interface for with-

FIGURE 12-186
Relation between the view class (BankClientAccessUl) and its associated business class
(BankClian).
View class for the
BankClient
class

BankClientAccessUl

Business class

BankClient




308 ruRT FOUR: OBJECT-ORIENTED DESIGN

CheckingAccount 11

SavingsAccouniLiT

SavingsAceaunl

FIGURE 12-17

The view classes for chegking and savings accounts.

drawal from savings accounts), and WithdrawCheckingUl view class (interface for
withdrawal from savings accounts),

» Iterate and refine. This is the final step. Through the iteration and refinement
process, we notice that the four classes DepositCheckingll, DepositSavingsUI,
WithdrawSavingsUL, and WithdrawCheckingUI basically provide a single service,
which is getting the amount of the ransaction (whether user wants to withdraw
or deposit) and sending appropriate messages to SavingsAccount or CheckingAc-
count business classes. Therefore, they are good candidates to be combined into
two view classes; one for CheckingAccount and one for SavingsAccount (by
following Ul rule 3). The CheckingAecountUI and SavingsAccountUI allow
users to deposit money to or withdraw money from checking and savings

accounts.

The CheckingAccountUl view class provides the interface for a checking ac-
count deposit or withdrawal (see Figure 12—17).

The SavingsAccountUl view class provides the interface for a savings account
deposit or withdrawal (see Figure 12-17).

Finally, we need to create one more view class that provides the main control
or the main Ul to the ViaMNet bank system. The MainUI view class provides the
main contrel interface for the ViaNet bank system,

12.8.2 The View Layer Micro Process
Based on the outcome of the macro process, we have the following view classes:

BankChentAccessUI
MainlLIT
AccountTransaction U]
CheckingAccountU]
SavingsAccountUl




CHARTER 12: VIEW LAYER: DESIGMING INTERFACE OBJECTS 309

For every interface object identified in the macro Ul design process,

* Apply micro-level Ul design rules and corollaries to develop the Ul We need to
go through each identified interface object and apply design rules (such as mak-
ing the Ul simple, transparent, and controlled by the user) and GUT guidelines
to design them.

» [terate and refine.

12.8.3 The BankClientAccessUl Interface Object

The BankClientAccessUl provides clients access to the system by allowing them
to enter their PIN code for validation. The BankClientAccessUI is designed to
work with a card reader device, where the user can insert the card and the card
number should be displayed automatically in the card number field. In a situation
where there is no card reader, such as on-line banking (e.g., user wants to log onto
the system from home), the user must enter his or her card number (see Figure
12-18).

12.8.4 The MainUl Interface Object

The MainUl provides the main control to the ATM services. Users can select to
deposit money to savings or checking, withdraw money from savings or checking,
inguire as to & balance or transaction history, or quit the session (see Figure 12-19),

12.8.5 The AccountTransactionUl Interface Object

The AccountTransactionUl interface object will display the transaction history of
either a savings or checking account. The user must select the account type by
pressing the radio buttons. Figure 12-20 displays the account balance inguiry and
transaction history interface.

FIGURE 12-18

The BarkClientAccessl| interface. The buttons are énlarged fo make it easier for touch screan
users. The numeric keypad on the right side of the dialog box is for data entry and is not a compo-
nent of the BankClientAccassl,

iallet Banking

Insert-Your Card er Enter Your Card Numbay
Enter Your PIN.Code and Prass OX

Coarc Numiber




310 euRT FOUR: OBJECT-ORIENTED DESIGN

Vialet Banking

Welcome to the ViaNet ATM
Make your selection by pressing the

desired button

Deposit Deposit withdraw § | Withdraw || Balance :
Checking §| Savings t:hecl-cing! Savings Inquiry

FIGURE 12-19
The MainUl interface

FIGURE 12-20
The AcoountTransactionl] interface.

iaMet Banking

r—Select- Checking or Savirngs————
| = Checking
|

| Savings

Balance |




CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE osyecTs 311

12.8.6 The CheckingAccountUl and SavingsAccountUl
Interface Objects

The CheckingAccountUI and SavingsAccountU] interface objects allow users to
deposit to and withdraw from checking and savings accounts. These two interfaces
are designed with two tabs, one for deposit and one for withdrawal. When users
press one of the MainUI's buttons, say, Deposit Savings, the SavingsAccountl]
will be activated and the system should go automatically to the Deposit Savings
window, Figure 12-21 displays the SavingsAccountUI and CheckingAccountUl
interfaces.

See problem 8 for an alternative design for SavingsAccountUl and CheckingAc-
countUl classes. It always is a good idea to create an alternative design and select
the one that best satisfies the requirements.

12.8.7 Defining the Interface Behavior

The role of a view layer object is to allow the users 1o manipulate the business
maodel, The actions a user takes on a screen (for example, pressing the Done but-
ton) should be translated into a request to the business object for some kind of pro-
cessing. When the processing is completed, the interface can update itself by dis-
playing new information, opening a new window, or the like.

Defining behavior for an interface consists of identifying the events o which
you want the system to respond and the actions 1o be taken when the event occurs.
Both GUI and business objects can generate events when something happens o
them (for example, a button is pushed or a client’s name changes). In response o
these events, you define actions to take. An action i a combination of an object
and a message sent to it

FIGURE 12-21
The CheckingAccountl and SavingsAccountld| interface objects.




312 eeAT FOUR: OBJECT-ORIENTED DESIGN

FIGURE 12-21




CHAPTER 12! VIEW LAYER: DESIGNING INTERFACE OBJECTS 313

Llgar presses OK bufton

VeniyPassword
(aCardMNurnber.aFin)

BankClient::verifyPassword (cardNurmber. aPIN)

Mot faund r Dsplay “Incorrect
}-l PIM, please try
Esajnll

Activate.
BankUTWindow

FIGURE 12-22
An activity diggram for the BankClientAccaessl),

12.8.7.1 Identifying Events and Actions for the BankClientAccessUI Interface
Object When the user inserts his or her card, types in a PIN code, and presses
the OK button, the interface should send the message BankClient::verifyPass-
word (see Chapter 10) to the object to identify the client. If the password is found
correct, the MainUl should be displayed and provide users with the ATM services:
otherwise, an error message should be displayed. Figure 12-22 is the UML activ-
ity diagram of BankClientAccessUl events and actions.

12.8.7.2 Identifying Events and Actions for the MainUI Interface Object
From this interface, the user should be able 1o do the following:

Deposit mnto the checking account by pressing the Deposit Checking button.
Deposit mto the savings account by pressing the Deposit Savings button,
Withdraw from the savings account by pressing the Withdraw Savings button.
Withdraw from the checking account by pressing the Withdraw Checking button.
View balance and transaction history by pressing the Balance Inguiry button.
Exit the ATM by pressing Done,

. L] L] L] L -

Figure 12-23 is the UML activity diagram of MainUI events and actions.



314 PaRT FOUR: OBJECT-ORIENTED DESIGN

I Butten is pressed

h Y b 4 L
Deposit Dieposit Savings Withdraw Withidraw Balance Inguiry Done burmon is
Checking baiton button |5 Checking bunion Savings bution 15 bution is pressed

is pressed pressed is pregsed preseed pressed

Display Display Dasplay Display ;
SavingsAccountL] SavingsAccouniUl | | CheskingAccouniUl | | CheckingAccount U] Display -

window/tab window/tnb wiriclow/taby windowltab AceountTransaction

Deposit Checking Deposit Savings Withdraw Checking Withdraw Savings

FIGURE 12-23

An activity diagram for the Mainll,

12.8.7.3 Identifying Events and Actions for the SavingsAccountUl Interface
Object The SavingsAccountU] has two tabs. First, the SavingsAccountUI opens
the appropriate tab. For example, if the user selects the Deposit Savings from
the MainUL the SavingsAccountUl will display the Deposit Savings tab. Figure
12-24 shows the activity diagram for the Deposit Savings. A withdrawal is simi-
lar to Deposit Savings and has been left as an exercise; see problem 6.

FIGURE 12-24
Activity diagram for processing a deposit 10 a savings agcount.

Deposit Savings button is pressed in
the BankUT window

Display Diepasit
Savings window

Account::deposil (anAmount)




CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE CeJEcT: 315

Identifying events and actions for the CheckingAccountUl interface object i5
left as an exercise; see problem 7.

12.8.74 ldentifying Events and Actions for the AccountTransactionUl Inter-
face Object A user can select either savings or checking account by pressing on
the Savings or Checking radio button, The system then will display the balance
and transaction history for the selected account type. The default is the checking
account, s0 when the AccountTransactionUl window is opened for the first time,
it will show the checking account history. Pressing on the savings account radio
button will cause it to display the savings account balance and history. To close
the display and get back to MainUl, the user presses the Done button (see Figure
12-235). Notice that here we assume that the account has a method called display-
Trans, which takes a string parameter for type of account (Savings or Checking)
and retrieves the appropriate transaction. Since we did not identify or design it, we
need to develop it here. This occurs quite often during sofiware development,
which is why the process is iterative.

Figure 12-26 shows the relationships among the classes we have designed so
far, especially the relationship among the view classes and other business classes.

FIGURE 12-25
Activity diagram for displaying thie account iransaction.

Burton is pressed

Savings s

pressed

Aocount:displayTrans (“Savings™) Avceount;:displayTrans (“Checking™)

— Prome is pressed



Tzt Clasdey Wiew Dladsied)
Wk
BankClesbArveali] LX)
4] #accouni el
L I
; FhankClient | HankCliem BiceoairTrsrisc BoaliT:
BankCliesd AThiMachine sl Mainlll AcceuniT mnssction Ll
Hfesttdena : Sinng A 1 Gidng
Flartame - fefing stuie | Sinng
ReicN b ; BNy #iakChenlAeresstil] wshowflarClisntAccesstIl) itiowhainl!l{)
EpinNumehea : Sming | | pro—ry, Hank{lemthceinilll
Padiniii | Ao o Sl DU
Fhaeh TTH: Rark DR T, T
sty 5
T Hat [ 1 I
1.~ s AccouniTomac o] EavingsAccounill] Chechinpiccoutil
Acces Clases) A Rirmnaldld
CoOin
WipaedDare - Doas
HaskDl ""::EL srll":::" + Teankaction worran T i - Tieme
ibankClient ; BankChieni | | Rickeaf yrs - itie
Barnosia - flosd Bz © Acsuun Baczuum ¢ Accuum Bacouum 1 Avsoum
.hmg. Emnﬁm BpaaiBlalance | Meal
Bagonunl | Agtount
— watiwAcomest TranseuonLIi0 | || sshosSavingi Acommilil | | sibosCheciengAcmeamidicg
v lhalrm )
srmreve e} Nireaie Taasmactiont §
tupdabeCliend) FreireveAvea | T ¥ Y
pretisveSvingEAgceun]| Acvaanil b
+updatsSaviagy ArToui ) h
sermrvel_ttclom A o )
srirpubme B K ing Acemul | ‘i‘
CheclasgAecium Saviagihccoudl
Faav ACodmns Favingh ichecking : Accoum
i i | Checling .
+uirhdand | |
eemievs Accoy i
—ieirdveA oot | L
T FibcIemt apda e ooound |
|
1
FIGURE 12-26

UML class diagram of the ViaMet ATM system, showing the relationship of the new view classes
with the business and access classes.

HNOd 14V Q|E

WENS30 O3 LNIHO-LOArE0



CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE OBJECTS 31T

12.9 SUMMARY

The main goal of a user interface is to display and obtain information needed in
an accessible, efficient manner. The design of a software’s interface, more than any-
thing else, affects how the user interacts and, therefore, experiences the application.
It is important for the design to provide users the information they need and clearly
tell them how to complete a task successfully. A well-designed UI has visual
appeal that motivates users to use the application. In addition, it should use the
limited screen space efficiently.

In this chapter, we learned that the process of designing view layer classes con-
sists of the following steps:

1. Macro-level UI design process: identify view layer objects.

2. Micro-level Ul design activities:
2.1. Design the view layer objects by applying the design axioms and corollaries.
2.2, Prepare a prototype of the view layer interface.

3, Test usability and wser satisfaction.

4, Refine and iterate,

The first step of the process concerns identifying the view classes and their re-
sponsibilities by utilizing the view layer macro-level process. The second step is
to design these classes by utilizing view layer micro-level processes, User satis-
faction and usability testing will be studied in the next chapter. Furthermore, we
looked at Ul design rules, which are based on the design corollaries; and finally
we studied the guidelines for developing 4 graphical user interface (GUI).

The guidelines are not a substitution for effective evaluation and iterative re-
finement within a design. However, they can provide helpful advice during the de-
sign process. Guidelines emphasize the need to understand the intended audience
and the tasks 1o be carried out, the need to adopt an iterative design process and
identify use cases, and the need 1o consider carefully how the guidelines can be
applied in specific situations. Nevertheless, the benefits gained from following de-
sign guidelines should not be underestimated. They provide valuable reference ma-
terial to help with difficult decisions that crop up during the design process. and
they are a springboard for ideas and a checklist for omissions. Used with the
proper respect and in context, they are a valuable adjunct to relying on designer
intuition alone to solve interface problems,

KEY TERMS

Application window (p. 292)

Data entry window (p. 292)

Graphical user interface (GUT) (p. 281)
Metaphor {(p. 290)

Mode (p. 291)

Object-oriented user interface (QOUT) (p. 282)
Spring-loaded mode (p. 292)

User-centered interface (p. 287)



318 PRt FOUR: OBJECT-ORIENTED DESIGN

1. Why is user interface one of the most important components of any software?
2. How can we develop or improve our creativity?
3. Perform a research on GUI and OOUI and write 2 short paper comparing them.
4. Why do users find OOUI easier to use?
5. How can use cases help us design the view layer objects?
6. Describe the macro and micro processes of view laver design.
7. How can metaphors be used in the design of a user interface?
8. Under what circumstances can you use modes in your user interface?
9, Describe the Ul design rules.
10. What is KISS?
11. How would you achieve consistency in your user interface?
12. How ean you make your Ul forgiving?
13, Describe some of the ways that you can provide the user fesdback:

1. A touch screen is one way to interact with the ViaNet kiosk. What are some other ways
1o interact with ViaNet kiosk? Use your imagination to design an interface. Also, design
it for people with disability challenges.

2. Research the WWW or your local library on OOUI tools on the market and write a
paper of your findings,

3. Please describe problems with the design of the window in Figure 12-27.

4. How can you improve the design of the interface in Figure 12-287

5. The window in Figure 1229 suffers from an overkill of radio buttons, Improve the in-
terface by redesigning it.

FIGURE 12-27
Problem 3.




CHAPTER 12: VIEW LAYER: DESIGNING INTERFAGE OBJECTS 319




320 paRT FOUR: OBJECT-ORIENTED DESIGN

7

FIGURE 12-30
The AccountUl view class for both CheckingAccount and Savingsfcoount classes.

6. Develop an activity diagram for Withdraw Savings.

7. Identify events and actions for the CheckingAccountUl interface object.

8. An alternative design to the ViaNet bank UI would be to create one view class (say, Ac-
countUT) instead of separate view classes for CheckingAccount and SavingsAccount (see
Figure 12-30). Figure 12-31 shows an aliernative design for the Accountl/l. Compare
this design to the one in the text and point out advantages and disadvantages to each

FIGURE 12-31
An alternative design for the Atcountl] interface object.




CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE oBJECTS 321

REFERENCES

1. Capucciati, Maria R. Purting Your Best Face Forward: Designing an Effective User In-
rerface. Redmond, WA: Microsoft Press, 1991,

2, IBM. Human-user interaction, object-oriented user interface, hitps/fwww.ibm com/ibm/hei,
1997,

3. Jacobson, Ivar; Ericsson, Maria; and Jacobson, Agneta, The Object Advantage Business
Process, Reengineering with Object Technology. Reading, MA: Addison-Wesley, 1995,

4. Sulaiman, Suzish. “Ussbility and the Software Production Life Cycle” Proceedings of
the CHI '96, Conference Companion on Human Factors in Computing Systems: Com-
mon Ground, Vancouver, British Columbia, 1996, pp. 61-62.

3. Trower, Tandy. Creating a Well-Designed User Interface. Stanford, CA: University
Video Communication, 1994,



